×

Effect of rotation on the onset of thermal convection in a sparsely packed porous layer using a thermal non-equilibrium model. (English) Zbl 1194.80050

Summary: Linear and nonlinear stability of a rotating fluid-saturated sparsely packed porous layer heated from below and cooled from above is studied when the fluid and solid phases are not in local thermal equilibrium. The extended Darcy-Brinkman model that includes the time derivative and Coriolis terms is employed as a momentum equation. A two-field model that represents the fluid and solid phase temperature fields separately is used for energy equation. The onset criterion for both stationary and oscillatory convection is derived analytically. It is found that small inter-phase heat transfer coefficient has significant effect on the stability of the system. There is a competition between the processes of rotation and thermal diffusion that causes the convection to set in through oscillatory mode rather than stationary. The rotation inhibits the onset of convection in both stationary and oscillatory mode. The Darcy number stabilizes the system towards the oscillatory mode, while it has dual effect on stationary convection. Besides, the effect of porosity modified conductivity ratio, Darcy-Prandtl number and the ratio of diffusivities on the stability of the system is investigated. The nonlinear theory is based on the truncated representation of Fourier series method. The effect of thermal non-equilibrium on heat transfer is brought out. The transient behavior of the Nusselt number is investigated by using the Runge-Kutta method. Some of the convection systems previously reported in the literature is shown to be special cases of the system presented in this study.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76S05 Flows in porous media; filtration; seepage
76U05 General theory of rotating fluids
76T99 Multiphase and multicomponent flows
76E07 Rotation in hydrodynamic stability
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
Full Text: DOI

References:

[1] , Transport phenomena in porous media (1998) · Zbl 0918.76002
[2] , Transport phenomena in porous media (2005)
[3] Nield, D. A.; Bejan, A.: Convection in porous media, (2006) · Zbl 1256.76004
[4] , Handbook of porous media (2000) · Zbl 0954.00016
[5] , Handbook of porous media (2005)
[6] , Emerging topics in heat and mass transfer in porous media (2008)
[7] Kuznetsov, A. V.; Vafai, K.: Analytical comparison and criteria for heat and mass transfer models in metal hydride packed beds, Int. J. Heat mass transfer 38, No. 15, 2873-2884 (1995)
[8] Kuznetsov, A. V.: A perturbation solution for a non-thermal equilibrium fluid flow through a three-dimensional sensible storage packed bed, Trans. ASME J. Heat transfer 118, 508-510 (1996)
[9] Vafai, K.; Amiri, A.: Non-darcian effects in combined forced convective flows, Transport phenomenon in porous media, 313-329 (1998)
[10] Kuznetsov, A. V.: Thermal non-equilibrium forced convection in porous media, Transport phenomenon in porous media, 103-130 (1998)
[11] Rees, D. A. S.; Pop, I.: Local thermal non-equilibrium in porous medium convection, Transport phenomena in porous media, 147-173 (2005)
[12] Rees, D. A. S.; Pop, I.: Vertical free convective boundary layer flow in a porous medium using a thermal non-equilibrium model, J. porous media 3, No. 1, 31-44 (2000) · Zbl 1126.76365
[13] Rees, D. A. S.: Vertical free convective boundary layer flow in a porous medium using a thermal non-equilibrium model: elliptic effects, J. appl. Math. phys 54, No. 3, 437-448 (2003) · Zbl 1099.76533 · doi:10.1007/s00033-003-0032-4
[14] Banu, N.; Rees, D. A. S.: Onset of Darcy – Bénard convection using a thermal non- equilibrium model, Int. J. Heat mass transfer 45, 2221-2228 (2002) · Zbl 1027.76015 · doi:10.1016/S0017-9310(01)00331-3
[15] Baytas, A. C.; Pop, I.: Free convection in a square porous cavity using a thermal non-equilibrium model, Int. J. Therm. sci. 41, 861-870 (2002)
[16] Baytas, A. C.: Thermal non-equilibrium natural convection in a square enclosure filled with a heat-generating solid phase non-Darcy porous medium, Int. J. Energy res. 27, 975-988 (2003)
[17] Baytas, A. C.: Thermal non-equilibrium free convection in a cavity filled with a non-Darcy porous medium, Emerging technologies and techniques in porous media, 247-258 (2004) · Zbl 1178.76320
[18] Malashetty, M. S.; Shivakumara, I. S.; Sridhar, K.: The onset of lapwood – Brinkman convection using a thermal non-equilibrium model, Int. J. Heat mass transfer 48, 1155-1163 (2005) · Zbl 1189.76203 · doi:10.1016/j.ijheatmasstransfer.2004.09.027
[19] Malashetty, M. S.; Shivakumara, I. S.; Sridhar, K.: The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model, Transp. porous med. 60, No. 3, 199-215 (2005)
[20] Malashetty, M. S.; Shivakumara, I. S.; Sridhar, K.; Mahantesh, S.: Convective instability of Oldroyd-B fluid saturated porous layer heated from below using a thermal non-equilibrium model, Transp. porous med. 64, No. 1, 123-139 (2006)
[21] Straughan, B.: Global non-linear stability in porous convection with a thermal non-equilibrium model, Proc. roy. Soc. lond. Ser. A 462, 409-418 (2006) · Zbl 1149.76626 · doi:10.1098/rspa.2005.1555
[22] Malashetty, M. S.; Swamy, M. S.; Sridhar, K.: Thermal convection in a rotating porous layer using a thermal non-equilibrium model, Phys. fluids 19, No. 5, 054102-1-054102-16 (2007) · Zbl 1146.76480 · doi:10.1063/1.2723155
[23] Postelnicu, A.: The effect of a horizontal pressure gradient on the onset of a Darcy – Bénard convection in a thermal non-equilibrium conditions, Int. J. Heat mass transfer 53, 68-75 (2010) · Zbl 1180.80041 · doi:10.1016/j.ijheatmasstransfer.2009.10.006
[24] Palm, E.; Tyvand, A.: Thermal convection in a rotating porous layer, Z. angew. Math. phys. 35, No. 1, 122-123 (1984) · Zbl 0539.76115 · doi:10.1007/BF00945182
[25] Qin, Y.; Kaloni, P. N.: Nonlinear stability problem of a rotating porous layer, Quart. appl. Maths. 53, No. 1, 129-142 (1995) · Zbl 0816.76035
[26] Vadasz, P.: Coriolis effect on gravity-driven convection in a rotating porous layer heated from below, J. fluid mech. 376, 351-375 (1998) · Zbl 0943.76033 · doi:10.1017/S0022112098002961
[27] Vadasz, P.: Flow and thermal convection in rotating porous media, Handbook of porous media, 395-440 (2000) · Zbl 1107.76411
[28] Straughan, B.: A sharp nonlinear stability threshold in rotating porous convection, Proc. roy. Soc. lond. Ser. A 457, 87-93 (2001) · Zbl 0984.76029 · doi:10.1098/rspa.2000.0657
[29] Lombardo, S.; Mulone, G.: Necessary and sufficient conditions of global nonlinear stability for rotating double diffusive convection in a porous medium, Continuum mech. Thermodyn. 14, 527-540 (2002) · Zbl 1040.76024 · doi:10.1007/s001610200091
[30] Govender, S.: Oscillating convection induced by gravity and centrifugal forces in a rotating porous layer distant from the axis of rotation, Int. J. Eng. sci. 41, 539-545 (2003) · Zbl 1211.76134 · doi:10.1016/S0020-7225(02)00182-9
[31] Govender, S.: Coriolis effect on the linear stability of convection in a porous layer placed far away from the axis of rotation, Transp. porous med. 51, 315-326 (2003)
[32] , Advances in fluid mechanics-II: convection 3 (2004)
[33] Katto, Y.; Masuoka, T.: Criterion for the onset of convective flow in a fluid in a porous medium, Int. J. Heat mass transfer 10, 297-309 (1967)
[34] Horton, C. W.; Rogers, F. T.: Convection currents in a porous medium, J. appl. Phys. 16, 367-370 (1945) · Zbl 0063.02071 · doi:10.1063/1.1707601
[35] Lapwood, E. R.: Convection of a fluid in a porous medium, Proc. Cambridge philos. Soc. 44, 508-521 (1948) · Zbl 0032.09203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.