×

An approximate solution for nonlinear backward parabolic equations. (English) Zbl 1194.35494

Summary: We consider the backward parabolic equation
\[ \begin{cases} u_t+Au=f(t,u(t)),\quad & 0<t<T,\\ u(t)=g\end{cases} \]
where \(A\) is a positive unbounded operator and \(f\) is a nonlinear function satisfying a Lipschitz condition, with an approximate datum \(g\). The problem is severely ill-posed. Using the truncation method we propose a regularized solution which is the solution of a system of differential equations in finite dimensional subspaces. According to some a priori assumptions on the regularity of the exact solution we obtain several explicit error estimates including an error estimate of Hölder type for all \(t\in [0,T]\). An example on heat equations and numerical experiments are given.

MSC:

35R25 Ill-posed problems for PDEs
35K05 Heat equation
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Denche, M.; Bessila, K., A modified quasi-boundary value method for ill-posed problems, J. Math. Anal. Appl., 301, 419-426 (2005) · Zbl 1084.34536
[2] Ewing, R. E., The approximation of certain parabolic equations backward in time by Sobolev equations, SIAM J. Math. Anal., 6, 283-294 (1975) · Zbl 0292.35004
[3] Gajewski, H.; Zacharias, K., Zur Regularisierung eiter Klass nichtkorekter Probleme bei Evolutionsgleichungen, J. Math. Anal. Appl., 38, 784-789 (1972) · Zbl 0234.65079
[4] Ghidaglia, J. M., Some backward uniqueness result, Nonlinear Anal., 10, 777-790 (1986) · Zbl 0622.35029
[5] Hao, D. N.; Duc, N. V.; Sahli, H., A non-local boundary value problem method for parabolic equations backward in time, J. Math. Anal. Appl., 345, 805-815 (2008) · Zbl 1160.35070
[6] Hao, D. N.; Duc, N. V., Stability results for the heat equation backward in time, J. Math. Anal. Appl., 353, 627-641 (2009) · Zbl 1170.35097
[7] Hartman, P., Ordinary Differential Equations (1982), Birkhäuser · Zbl 0125.32102
[8] Lattès, R.; Lions, J. L., Méthode de Quasi-réversibilité et Applications (1967), Dunod: Dunod Paris · Zbl 0159.20803
[9] Long, N. T.; Dinh, Alain P. N., Approximation of a parabolic non-linear evolution equation backwards in time, Inverse Problems, 10, 905-914 (1994) · Zbl 0809.35161
[10] Quan, P. H.; Dung, N., A backward nonlinear heat equation: regularization with error estimates, Appl. Anal., 84, 4, 343-355 (2005) · Zbl 1068.35050
[11] Showalter, R. E., Cauchy problem for hyper-parabolic partial differential equations, (Trends in the Theory and Practice of Non-Linear Analysis (1983), Elsevier) · Zbl 0587.35044
[12] Showalter, R. E., The final value problem for evolution equations, J. Math. Anal. Appl., 47, 563-572 (1974) · Zbl 0296.34059
[13] Tikhonov, A. N.; Arsenin, V. Y., Solutions of Ill-Posed Problems (1977), Winston: Winston Washington · Zbl 0354.65028
[14] Trong, D. D.; Quan, P. H.; Khanh, T. V.; Tuan, N. H., A nonlinear case of the 1-D backward heat problem: Regularization and error estimate, Z. Anal. Anwend., 26, 2, 231-245 (2007) · Zbl 1246.35104
[15] Trong, D. D.; Tuan, N. H., Stabilized quasi-reversibility method for a class of nonlinear ill-posed problems, Electron. J. Differential Equations, 84, 1-12 (2008) · Zbl 1171.35485
[16] Trong, D. D.; Tuan, N. H., Regularization and error estimate for the nonlinear backward heat problem using a method of integral equation, Nonlinear Anal., 71, 9, 4167-4176 (2009) · Zbl 1172.35517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.