×

The Hamiltonian structure of the Maxwell-Vlasov equations. (English) Zbl 1194.35463

Summary: P.J. Morrison [The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. 80A, 383–386 (1980)] has observed that the Maxwell-Vlasov and Poisson-Vlasov equations for a collisionless plasma can be written in Hamiltonian form relative to a certain Poisson bracket. We derive another Poisson structure for these equations by using general methods of symplectic geometry. The main ingredients in our construction are the symplectic structure on the co-adjoint orbits for the group of canonical transformations, and the symplectic structure for the phase space of the electromagnetic field regarded as a gauge theory. Our Poisson bracket satisfies the Jacobi identity, whereas Morrison’s does not [A. Weinstein and P.J. Morrison, Comments on: The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. 86A, 235–236 (1981)]. Our construction also shows where canonical variables can be found and can be applied to the Yang-Mills-Vlasov equations and to electromagnetic fluid dynamics.

MSC:

35Q83 Vlasov equations
Full Text: DOI

References:

[1] Abraham, R.; Marsden, J., Foundations of Mechanics (1978), Benjamin: Benjamin New York · Zbl 0393.70001
[2] Adler, M., Inv. Math., 50, 219-248 (1979) · Zbl 0393.35058
[3] Arms, J., Linearization stability of gravitational and gauge fields, J. Math. Phys., 20, 443-453 (1979)
[4] Arnold, V., Sur la geometrié differentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluids parfaits, Ann Inst. Fourier Grenoble, 16, 319-361 (1966) · Zbl 0148.45301
[5] Arnold, V., Mathematical methods of classical mechanics, (Springer Graduate Texts in Math. (1978), Springer: Springer New York), No. 60 · Zbl 0386.70001
[6] Batt, J., Global symmetric solutions of the initial value problem of stellar dynamics, J. Diff. Eqns., 25, 342-364 (1977) · Zbl 0366.35020
[7] Bialynicki-Birola, I.; Iwinski, Z., Canonical formulation of relativistic hydrodynamics, Rep. Math. Phys., 4, 139-151 (1973) · Zbl 0259.76055
[8] Bialynicki-Birula, I.; Hubbard, J. C., Gauge-independent canonical formulation of relativistic plasma theory (1981), preprint
[9] Born, M.; Infeld, L., On the quantization of the new field theory, (Proc. Roy. Soc. A, 150 (1935)), 141 · Zbl 0011.32901
[10] Braun, W.; Hepp, K., The Vlasov dynamics and its fluctuations in the 1/n limit of interacting classical particles, Comm. Math. Phys., 56, 101-113 (1977) · Zbl 1155.81383
[11] Davidson, R. C., Methods in nonlinear plasma theory (1972), Academic Press: Academic Press New York
[12] Ebin, D.; Marsden, J., Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92, 102-163 (1970) · Zbl 0211.57401
[13] Guillemin, V.; Sternberg, S., Geometric asymptotics, (Am. Math. Soc. Survey, vol. 14 (1977), American Math. Society: American Math. Society Providence, R.I) · Zbl 0503.58018
[14] Guillemin, V.; Sternberg, S., On the equations of motion of a classical particle in a Yang-Mills field and the principle of general covariance, Hadronic J., 1, 1-32 (1978) · Zbl 0449.53051
[15] Guillemin, V.; Sternberg, S., The moment map and collective motion, Ann. of Phys., 127, 220-253 (1980) · Zbl 0453.58015
[16] Holm, D., Canonical and noncanonical formulations of ideal magnetodynamics (1981), preprint
[17] Holmes, P. J.; Marsden, J. E., A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam, Arch. Rat. Mech. Anal., 76, 135-167 (1981) · Zbl 0507.58031
[18] Horst, E., On the existence of global classical solutions of the initial values problem of stellar dynamics, (Pack, D. C.; Neunzert, H., Mathematical Problems in the Kinetic Theory of Gases (1980)) · Zbl 0468.70015
[19] Horst, E., On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equations (1980), (parts I, II), preprint
[20] Kato, T., Quasi-linear equations of evolution, with applications to partial differential equations, Springer Lecture Notes, 448, 25-70 (1975) · Zbl 0315.35077
[21] Marsden, J. E., Lectures on geometric methods in mathematical physics (1981), SIAM · Zbl 0485.70001
[22] Marsden, J.; Weinstein, A., Reduction of symplectic manifolds with symmetry, Reports on Math. Phys., 5, 121-130 (1974) · Zbl 0327.58005
[23] Marsden, J.; Weinstein, A.; Schmid, R.; Spencer, R., Hamiltonian Systems and Symmetry Groups with applications to plasma physics (1982), in preparation
[24] Maslov, V. P., Complex Markov chains and Feynman path integrals (1976), Nauka: Nauka Moscow, (in Russian) · Zbl 0449.35086
[25] Morrison, P. J., The Maxwell-Vlasov equations as a continuous Hamiltonian system, Phys. Lett., 80A, 383-386 (1980)
[26] Morrison, P. J., Hamiltonian field description of the one-dimensional Poisson-Vlasov equations (1981), preprint
[27] Morrison, P. J.; Greene, J. M., Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics, Phys. Rev. Letters, 45, 790-794 (1980)
[28] Pauli, W., General Principles of Quantum Mechanics (1933), Springer, Reprinted in English translation by
[29] Percival, I. C., A variational principle for invariant tori of fixed frequency, J. Phys. A., Math. Gen., 12, 157-160 (1979) · Zbl 0394.70018
[30] Ratiu, T., On the smoothness of the time \(t\)-map of the KdV equation and the bifurcation of the eigenvalue of Hill’s operator, Springer Lecture Notes in Math., 755, 248-294 (1979) · Zbl 0426.35083
[31] Ratiu, T., Euler-Poisson equations on Lie algebras and the \(N\)-dimensional heavy rigid body, (Proc. Natl. Acad. Sci. U.S.A., 78 (1981)), 1327-1328 · Zbl 0459.70007
[32] Ratiu, T.; Schmid, R., The differentiable structure of three remarkable diffeomorphism groups, Math. Z., 177, 81-100 (1981) · Zbl 0451.58011
[33] Ukai-Okabe, On classical solutions in the large in time of two-dimensional Vlasov’s equation, Osaka J. Math., 15, 245-261 (1978) · Zbl 0405.35002
[34] Van Hove, L., Sur le problème des relations entre les transformations unitaires de la mécanique quantique et les transformations canoniques de la mécanique classique, Acad. Roy. Belgique, Bull. Cl. Sci., 37, 610-620 (1981) · Zbl 0044.23103
[35] Weinstein, A., Bifurcations and Hamilton’s principle, Math. Zeit., 159, 235-248 (1978) · Zbl 0366.58003
[36] Weinstein, A., A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys., 2, 417-420 (1978) · Zbl 0388.58010
[37] Weinstein, A.; Morrison, P. J., Comments on: The Maxwell-Vlasov equations as a continuous Hamiltonian system, Phys. Lett., 86A, 235-236 (1981)
[38] Wollman, S., The spherically symmetric Vlasov-Poisson system, J. Diff. Eqns, 35, 30-35 (1980) · Zbl 0402.76089
[39] Wollman, S., Global-in-time solutions of the two-dimensional Vlasov-Poisson systems, Comm. Pure Appl. Math., 33, 173-197 (1980) · Zbl 0437.45023
[40] Berezin, F. A., Funct. Anal. Appl., 1, 91 (1967) · Zbl 0227.22020
[41] Gibbons, J., Physica, 3D, 503 (1981) · Zbl 1194.35298
[42] R.G. Spencer and A.N. Kaufman, Hamiltonian Structure of Two-Fluid Plasma Dynamics (preprint).; R.G. Spencer and A.N. Kaufman, Hamiltonian Structure of Two-Fluid Plasma Dynamics (preprint).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.