×

Nonlinear boundary control of the unforced generalized Korteweg-de Vries-Burgers equation. (English) Zbl 1194.35389

Summary: We consider the boundary control problem of the unforced generalized Korteweg-de Vries-Burgers (GKdVB) equation when the spatial domain is [0,1]. Three control laws are derived for this equation and the \(L^{2}\)-global exponential stability of the solution is proved analytically. Numerical results using the finite element method (FEM) are presented to illustrate the developed control schemes.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B35 Stability in context of PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Amick, C.J., Bona, J.L., Schonbek, M.E.: Decay of solutions of some nonlinear wave equations. J. Differ. Equ. 81, 1–49 (1989) · Zbl 0689.35081 · doi:10.1016/0022-0396(89)90176-9
[2] Armaou, A., Christofides, P.D.: Wave suppression by nonlinear finite dimensional control. Chem. Eng. Sci. 55, 2627–2640 (2000) · doi:10.1016/S0009-2509(99)00544-8
[3] Baker, J., Christofides, P.D.: Finite dimensional approximation and control of non-linear parabolic PDE systems. Int. J. Control 73(5), 439–456 (2000) · Zbl 1001.93034 · doi:10.1080/002071700219614
[4] Balogh, A., Krstic, M.: Boundary control of the Korteweg–de Vries–Burgers equation: further results on stabilization and well posedness, with numerical demonstration. IEEE Trans. Automat. Control 45, 1739–1745 (2000) · Zbl 0990.93049 · doi:10.1109/9.880639
[5] Biler, P.: Asymptotic behaviour in time of solutions to some equations generalizing the Korteweg–de Vries–Burgers equation. Bull. Pol. Acad. Sci. Math. 32(5–6), 275–282 (1984) · Zbl 0561.35064
[6] Biler, P.: Large-time behaviour of periodic solutions to dissipative equations of Korteweg–de Vries–Burgers type. Bull. Pol. Acad. Sci. Math. 32(7–8), 401–405 (1984) · Zbl 0561.35065
[7] Bona, J.L., Dougalis, V.A., Karakashian, O.A., McKinney, W.R.: The effect of dissipation on solutions of the generalized Korteweg–de Vries equations. J. Comput. Appl. Math. 74, 127–154 (1996) · Zbl 0869.65059 · doi:10.1016/0377-0427(96)00021-0
[8] Bona, J.L., Luo, L.: Decay of solutions to nonlinear, dispersive wave equations. Differ. Integral Equ. 6(5), 961–980 (1993) · Zbl 0780.35098
[9] Bona, J.L., Sun, S.M., Zhang, B.-Y.: A non-homogeneous boundary-value problem for Korteweg–de Vries equation in a quarter plane. Trans. Am. Math. Soc. 354(2), 427–490 (2001) · Zbl 0988.35141 · doi:10.1090/S0002-9947-01-02885-9
[10] Bona, J.L., Sun, S.M., Zhang, B.-Y.: A non-homogeneous boundary-value problem for Korteweg–de Vries equation posed on a finite domain. Commun. Partial Differ. Equ. 28(7–8), 1391–1436 (2003) · Zbl 1057.35049 · doi:10.1081/PDE-120024373
[11] Burgers, T.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948) · doi:10.1016/S0065-2156(08)70100-5
[12] González, A., Castellanos, A.: Korteweg–de Vries–Burgers equation for surface waves in nonideal conducting liquids. Phys. Rev. E 49(4), 2935–2940 (1994) · doi:10.1103/PhysRevE.49.2935
[13] Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981) · Zbl 0559.73001
[14] Jeffrey, A., Kakutani, T.: Weak nonlinear dispersive waves: a discussion centered around the Korteweg–de Vries equation. SIAM Rev. 14(4), 582–643 (1972) · Zbl 0221.35038 · doi:10.1137/1014101
[15] Jonshon, R.S.: Shallow water waves on a viscous fluid–the undular bore. Phys. Fluids 15, 1693–1699 (1972) · Zbl 0264.76014 · doi:10.1063/1.1693764
[16] Krstic, M.: On global stabilization of Burgers’ equation by boundary control. Syst. Control Lett. 37, 123–142 (1999) · Zbl 1074.93552 · doi:10.1016/S0167-6911(99)00013-4
[17] Liu, G., Duan, G.: Stationary wave solution for equations of longitudinal wave in a nonlinear elastic rod. J. Henan Norm. Univ. Natur. Sci. 29, 101–103 (2001) · Zbl 1016.35063
[18] Liu, W.-J., Krstic, M.: Controlling nonlinear water waves: boundary stabilization of the Korteweg–de Vries–Burgers equation. In: Proc. Am. Control Conf., vol. 3, pp. 1637–1641 (1999)
[19] Liu, W.-J., Krstic, M.: Adaptive control of Burgers’ equation with unknown viscosity. Int. J. Adapt. Control Signal Process. 15, 745–766 (2001) · Zbl 0995.93039 · doi:10.1002/acs.699
[20] Liu, W.-J., Krstic, M.: Global boundary stabilization of the Korteweg–de Vries–Burgers equation. Comput. Appl. Math. 21, 315–354 (2002) · Zbl 1125.35404
[21] Miura, R.M.: The Korteweg–de Vries equation: a survey of results. SIAM Rev. 18(3), 412–459 (1976) · Zbl 0333.35021 · doi:10.1137/1018076
[22] Smaoui, N.: Nonlinear boundary control of the generalized Burgers equation. Nonlinear Dyn. 37, 75–86 (2004) · Zbl 1078.76026 · doi:10.1023/B:NODY.0000040023.92220.09
[23] Smaoui, N.: Controlling the dynamics of Burgers equation with a higher order nonlinearity. Int. J. Math. Math. Sci. 2004(62), 3321–3332 (2004) · Zbl 1070.35072 · doi:10.1155/S0161171204404116
[24] Smaoui, N.: Boundary and distributed control of the viscous Burgers equation. J. Comput. Appl. Math. 182, 91–104 (2005) · Zbl 1074.93023 · doi:10.1016/j.cam.2004.10.020
[25] Smaoui, N., Al-Jamal, R.: A nonlinear boundary control for the dynamics of the generalized Korteweg–de Vries–Burgers equation. Kuwait J. Sci. Eng. 34, 57–76 (2007) · Zbl 1207.93083
[26] Smaoui, N., Al-Jamal, R.: Boundary control of the generalized Korteweg–de Vries–Burgers equation. Nonlinear Dyn. 51(3), 439–446 (2008) · Zbl 1170.93018 · doi:10.1007/s11071-007-9222-5
[27] Zhang, B.-Y.: Boundary stabilization of the Korteweg–de Vries equation, in control and estimation of distributed parameter systems: nonlinear phenomena. Int. Ser. Numer. Math. 118, 371–389 (1994) · Zbl 0811.35133
[28] Zheng, X.-D., Xia, T.-C., Zhang, H.-Q.: New exact traveling wave solutions for compound KdV–Burgers equations in mathematical physics. Appl. Math. E-Notes 2, 45–50 (2002) · Zbl 0996.35068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.