×

Mirković-Vilonen polytopes lying in a Demazure crystal and an opposite Demazure crystal. (English) Zbl 1194.17008

The paper is concerned to the Mirković-Vilonen (MV for short) polytopes, defined by J. E. Anderson [Duke Math. J. 116, No. 3, 567–588 (2003; Zbl 1064.20047)] and described by J. Kamnitzer [Adv. Math. 215, No. 1, 66–93 (2007; Zbl 1134.14028)] as certain pseudo-Weyl polytopes. A necessary and sufficient condition for a MV polytope in a highest weight crystal to lie in a fixed Demazure crystal or in an opposite Demazure crystal is given in terms of the lengths of its edges. An explicit description as pseudo-Weyl polytopes is given for the extremal MV polytopes in a highest weight crystal. As a consequence, a polytopal condition is given for a MV polytope to lie in a fixed opposite Demazure crystal.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
14M15 Grassmannians, Schubert varieties, flag manifolds
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
14L35 Classical groups (algebro-geometric aspects)
20G10 Cohomology theory for linear algebraic groups
52B12 Special polytopes (linear programming, centrally symmetric, etc.)

References:

[1] Anderson, J. E., A polytope calculus for semisimple groups, Duke Math. J., 116, 567-588 (2003) · Zbl 1064.20047
[2] Atiyah, M. F., Convexity and commuting Hamiltonians, Bull. London Math. Soc., 14, 1-15 (1982) · Zbl 0482.58013
[3] Atiyah, M.; Pressley, A., Convexity and loop groups, (Artin, M.; Tate, J., Arithmetic and Geometry, vol. II. Arithmetic and Geometry, vol. II, Progr. Math., vol. 36 (1983), Birkhäuser: Birkhäuser Boston), 33-63 · Zbl 0529.22013
[4] Baumann, P.; Gaussent, S., On Mirković-Vilonen cycles and crystal combinatorics, Represent. Theory, 12, 83-130 (2008) · Zbl 1217.20028
[5] Berenstein, A.; Zelevinsky, A., Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., 143, 77-128 (2001) · Zbl 1061.17006
[6] Björner, A.; Brenti, F., Combinatorics of Coxeter Groups, Grad. Texts in Math., vol. 231 (2005), Springer: Springer New York · Zbl 1110.05001
[7] Braverman, A.; Gaitsgory, D., Crystals via the affine Grassmannian, Duke Math. J., 107, 561-575 (2001) · Zbl 1015.20030
[8] Braverman, A.; Finkelberg, M.; Gaitsgory, D., Uhlenbeck spaces via affine Lie algebras, (Etingof, P.; etal., The Unity of Mathematics. The Unity of Mathematics, Progr. Math., vol. 244 (2006), Birkhäuser: Birkhäuser Boston), 17-135 · Zbl 1105.14013
[9] Haines, T. J., Equidimensionality of convolution morphisms and applications to saturation problems, Adv. Math., 207, 297-327 (2006) · Zbl 1161.20043
[10] Hong, J., Mirković-Vilonen cycles and polytopes for a symmetric pair (2007), preprint · Zbl 1188.20044
[11] Ion, B., A weight multiplicity formula for Demazure modules, Int. Math. Res. Not., 2005, 5, 311-323 (2005)
[12] Kamnitzer, J., Mirković-Vilonen cycles and polytopes (2005), preprint · Zbl 1271.20058
[13] Kamnitzer, J., The crystal structure on the set of Mirković-Vilonen polytopes, Adv. Math., 215, 66-93 (2007) · Zbl 1134.14028
[14] Kashiwara, M., On crystal bases of the \(q\)-analogue of universal enveloping algebras, Duke Math. J., 63, 465-516 (1991) · Zbl 0739.17005
[15] Kashiwara, M., The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J., 71, 839-858 (1993) · Zbl 0794.17008
[16] Kashiwara, M., Bases cristallines des groupes quantiques, Cours Spécialisés, vol. 9 (2002), Société Mathématique de France: Société Mathématique de France Paris · Zbl 1066.17007
[17] S. Kato, private communication, 2008; S. Kato, private communication, 2008
[18] Lenart, C.; Postnikov, A., Affine Weyl groups in \(K\)-theory and representation theory, Int. Math. Res. Not., 2007, 12 (2007), Article ID rnm038, 65 pages · Zbl 1137.14037
[19] Littelmann, P., A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math., 116, 329-346 (1994) · Zbl 0805.17019
[20] Littelmann, P., Cones, crystals, and patterns, Transform. Groups, 3, 145-179 (1998) · Zbl 0908.17010
[21] Lusztig, G., Introduction to Quantum Groups, Progr. Math., vol. 110 (1993), Birkhäuser: Birkhäuser Boston · Zbl 0788.17010
[22] Lusztig, G., Braid group action and canonical bases, Adv. Math., 122, 237-261 (1996) · Zbl 0861.17008
[23] Lusztig, G., Piecewise linear parametrization of canonical bases (2008), preprint · Zbl 1255.17009
[24] Mirković, I.; Vilonen, K., Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett., 7, 13-24 (2000) · Zbl 0987.14015
[25] Mirković, I.; Vilonen, K., Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), 166, 95-143 (2007) · Zbl 1138.22013
[26] Moody, R. V.; Pianzola, A., Lie Algebras with Triangular Decompositions, Canad. Math. Soc. Ser. Monogr. Adv. Texts (1995), Wiley-Interscience: Wiley-Interscience New York · Zbl 0874.17026
[27] Naito, S.; Sagaki, D., Lakshmibai-Seshadri paths fixed by a diagram automorphism, J. Algebra, 245, 395-412 (2001) · Zbl 1040.17022
[28] Naito, S.; Sagaki, D., Crystal bases and diagram automorphisms, (Shoji, T.; etal., Representation Theory of Algebraic Groups and Quantum Groups. Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., vol. 40 (2004), Math. Soc. Japan: Math. Soc. Japan Tokyo), 321-341 · Zbl 1090.17013
[29] Naito, S.; Sagaki, D., A modification of the Anderson-Mirković conjecture for Mirković-Vilonen polytopes in types \(B\) and \(C\), J. Algebra, 320, 387-416 (2008) · Zbl 1153.22016
[30] Nakashima, T., Polytopes for crystallized Demazure modules and extremal vectors, Comm. Algebra, 30, 1349-1367 (2002) · Zbl 0991.17018
[31] Ngô, B. C.; Polo, P., Résolutions de Demazure affines et formule de Casselman-Shalika géométrique, J. Algebraic Geom., 10, 515-547 (2001) · Zbl 1041.14002
[32] Savage, A., Quiver varieties and Demazure modules, Math. Ann., 335, 31-46 (2006), Erratum: Math. Ann., in press · Zbl 1101.17010
[33] C. Schwer, Galleries and \(q\); C. Schwer, Galleries and \(q\) · Zbl 1298.05003
[34] Schwer, C., Galleries, Hall-Littlewood polynomials, and structure constants of the spherical Hecke algebra, Int. Math. Res. Not., 2006, 21 (2006), Article ID 75395, 31 pages · Zbl 1121.05121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.