×

Aspects of thick brane worlds: 4D gravity localization, smoothness, and mass gap. (English) Zbl 1193.83042

Summary: We review some interrelated aspects of thick braneworlds constructed within the framework of 5D gravity coupled to a scalar field depending on the extra dimension. It turns out that when analyzing localization of 4D gravity in this smooth version of the Randall-Sundrum model, a kind of dichotomy emerges. In the first case the geometry is completely smooth and the spectrum of the transverse traceless modes of the metric fluctuations shows a single massless bound state, corresponding to the 4D graviton, and a tower of massive states described by a continuous spectrum of Kaluza-Klein excitations starting from zero mass, indicating the lack of a mass gap. In the second case, there are two bound states, a massless 4D graviton and a massive excitation, separated by a mass gap from a continuous spectrum of massive modes; nevertheless, the presence of a mass gap in the graviton spectrum of the theory is responsible for a naked singularity at the boundaries (or spatial infinity) of the Riemannian manifold. However, the imposition of unitary boundary conditions, which is equivalent to eliminating the continuous spectrum of gravitational massive modes, renders these singularities harmless from the physical point of view, providing the viability of the model.

MSC:

83E15 Kaluza-Klein and other higher-dimensional theories
83E30 String and superstring theories in gravitational theory
83C45 Quantization of the gravitational field
83C75 Space-time singularities, cosmic censorship, etc.

References:

[1] DOI: 10.1103/PhysRevD.62.046008 · doi:10.1103/PhysRevD.62.046008
[2] DOI: 10.1016/S0370-2693(00)00303-8 · doi:10.1016/S0370-2693(00)00303-8
[3] DOI: 10.1103/PhysRevD.62.044017 · doi:10.1103/PhysRevD.62.044017
[4] DOI: 10.1016/S0550-3213(00)00271-6 · Zbl 0985.83027 · doi:10.1016/S0550-3213(00)00271-6
[5] DOI: 10.1016/S0370-2693(01)00233-7 · Zbl 0977.83064 · doi:10.1016/S0370-2693(01)00233-7
[6] DOI: 10.1103/PhysRevD.66.024024 · doi:10.1103/PhysRevD.66.024024
[7] DOI: 10.1016/j.nuclphysb.2005.12.018 · Zbl 1109.83312 · doi:10.1016/j.nuclphysb.2005.12.018
[8] DOI: 10.1103/PhysRevD.68.085007 · doi:10.1103/PhysRevD.68.085007
[9] DOI: 10.1016/j.physletb.2003.12.038 · Zbl 1246.81247 · doi:10.1016/j.physletb.2003.12.038
[10] DOI: 10.1103/PhysRevD.73.025016 · doi:10.1103/PhysRevD.73.025016
[11] DOI: 10.1142/S0218271807009395 · Zbl 1119.83012 · doi:10.1142/S0218271807009395
[12] DOI: 10.1103/PhysRevD.74.045003 · doi:10.1103/PhysRevD.74.045003
[13] Farakos K., J. Phys. Conf. Ser. 68 pp 012041–
[14] DOI: 10.1016/j.physletb.2007.01.009 · Zbl 1248.83152 · doi:10.1016/j.physletb.2007.01.009
[15] DOI: 10.1088/1742-6596/68/1/012045 · doi:10.1088/1742-6596/68/1/012045
[16] DOI: 10.1103/PhysRevD.65.125010 · doi:10.1103/PhysRevD.65.125010
[17] DOI: 10.1103/PhysRevD.67.105003 · doi:10.1103/PhysRevD.67.105003
[18] DOI: 10.1103/PhysRevD.70.104029 · doi:10.1103/PhysRevD.70.104029
[19] DOI: 10.1088/1742-6596/68/1/012021 · doi:10.1088/1742-6596/68/1/012021
[20] DOI: 10.1103/PhysRevD.77.044006 · doi:10.1103/PhysRevD.77.044006
[21] DOI: 10.1142/S0217751X09043067 · Zbl 1170.83452 · doi:10.1142/S0217751X09043067
[22] DOI: 10.1088/0034-4885/73/6/066901 · doi:10.1088/0034-4885/73/6/066901
[23] DOI: 10.1103/PhysRevD.80.065020 · doi:10.1103/PhysRevD.80.065020
[24] Liu Y.-X., JHEP 02 pp 080–
[25] DOI: 10.1016/S0550-3213(02)00691-0 · Zbl 0998.83046 · doi:10.1016/S0550-3213(02)00691-0
[26] Barbosa-Cendejas N., JHEP 10 pp 101–
[27] DOI: 10.1103/PhysRevD.73.084022 · doi:10.1103/PhysRevD.73.084022
[28] DOI: 10.1103/PhysRevD.77.126013 · doi:10.1103/PhysRevD.77.126013
[29] DOI: 10.1016/S0370-2693(01)00274-X · Zbl 0977.83073 · doi:10.1016/S0370-2693(01)00274-X
[30] Liu Y.-X., JHEP 02 pp 067–
[31] DOI: 10.1142/S0217732308026133 · Zbl 1145.83329 · doi:10.1142/S0217732308026133
[32] Liu Y.-X., JHEP 08 pp 041–
[33] DOI: 10.1103/PhysRevD.78.065025 · doi:10.1103/PhysRevD.78.065025
[34] Liu Y.-X., J. Cosmol. Astropart. Phys. 02 pp 003–
[35] DOI: 10.1103/PhysRevD.79.125022 · doi:10.1103/PhysRevD.79.125022
[36] DOI: 10.1103/PhysRevD.80.065019 · doi:10.1103/PhysRevD.80.065019
[37] K. Akama, Pregeometry, Lecture Notes Phys. 176 (Springer, 1982) p. 267.
[38] DOI: 10.1016/0370-2693(83)91254-6 · doi:10.1016/0370-2693(83)91254-6
[39] DOI: 10.1016/0370-2693(90)90617-F · doi:10.1016/0370-2693(90)90617-F
[40] DOI: 10.1142/S021773239900208X · doi:10.1142/S021773239900208X
[41] DOI: 10.1142/S0218271802002992 · doi:10.1142/S0218271802002992
[42] DOI: 10.1140/epjc/s2006-02551-5 · doi:10.1140/epjc/s2006-02551-5
[43] DOI: 10.1103/PhysRevLett.83.4690 · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[44] DOI: 10.1103/PhysRevLett.83.3370 · Zbl 0946.81063 · doi:10.1103/PhysRevLett.83.3370
[45] Lykken J., JHEP 06 pp 014–
[46] DOI: 10.1103/PhysRevLett.84.2778 · Zbl 0949.83019 · doi:10.1103/PhysRevLett.84.2778
[47] Maartens R., Liv. Rev. Rel. 7 pp 07– · Zbl 1071.83571 · doi:10.12942/lrr-2004-7
[48] DOI: 10.1103/PhysRevD.71.024032 · doi:10.1103/PhysRevD.71.024032
[49] DOI: 10.1103/PhysRevD.76.064025 · doi:10.1103/PhysRevD.76.064025
[50] DOI: 10.1016/0550-3213(85)90051-3 · doi:10.1016/0550-3213(85)90051-3
[51] DOI: 10.1016/S0370-2693(99)01331-3 · Zbl 0993.83034 · doi:10.1016/S0370-2693(99)01331-3
[52] DOI: 10.1103/PhysRevD.65.064008 · doi:10.1103/PhysRevD.65.064008
[53] Brandhuber A., JHEP 10 pp 013–
[54] DOI: 10.1088/0305-4470/32/48/308 · Zbl 0960.81027 · doi:10.1088/0305-4470/32/48/308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.