×

A method of analysis for end and transitional effects in anisotropic cylinders. (English) Zbl 1193.74072

Summary: We present a rigorous verification study and an extension to an existing semi-analytical finite element formulation for analysis of end and transition effects in prismatic cylinders. End and transition effects in stressed cylinders are phenomena associated with the difference between results that are predicted by the Saint-Venant solutions and the actual point-wise conditions. These differences manifest themselves as self-equilibrated stress states. Notwithstanding certain well-known exceptions (e.g., restrained torsion of open thin-walled sections), such effects in isotropic cylinders are usually confined to a very small neighborhood of a terminal boundary or transition zone, and are typically neglected. For anisotropy, as in the case of most smart/active and composite material systems, they can persist much further into the interior of the structure, and need to be quantified to design geometry transition zones and to fully understand the delamination effects. In the semi-analytical approach, we first discretize the governing equations within the cross-sectional plane of the cylinder. The end-solution fields satisfy the homogeneous form of the resulting semi-analytical system of ordinary differential equations. This leads to an algebraic eigenvalue problem, and an eigenfunction expansion of the stress and displacement fields due to end effects. Unique to the present study, we formulate a procedure to quantify the transitional effects for end-to-end connected cylinders for which the displacement and stress continuity along the transition interface need to be enforced. The semi-analytical approach has several distinct advantages: (i) It is computationally efficient, as only the cross-sectional geometry is discretized; (ii) it can be applied to arbitrary cross-sectional geometries and the most general form of anisotropy; and (iii) it yields direct measures for the decay lengths (or decay rates) of any end-or transition-solution field. Analytical solutions to end-effect problems are scarce. Those that exist are for simple geometry and material constitution. We use these analytical solutions, as well as solutions obtained using three-dimensional finite element models, to verify our approach and to assess its efficiency.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74E10 Anisotropy in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] ANSYS, September 1998. Coupled-Field Analysis Guide. ANSYS Release 5.5, 3rd ed.
[2] De Saint-Venant, A. J. C.B.: Memoire sur la torsion des prismes, Mém. savants étrangers, acad. Sci. Paris 14, 223-560 (1855)
[3] De Saint-Venant, A. J. C.B.: Memoire sur la flexion des prismes, J. math. Liouville 1, 89-189 (1856)
[4] Dong, S. B.; Huang, K. H.: Edge vibrations in laminated composite plates, J. appl. Mech., ASME 52, No. 2, 433-438 (1985) · Zbl 0569.73070 · doi:10.1115/1.3169065
[5] Dong, S. B.; Kosmatka, J. B.; Lin, H. C.: On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder. Part I. Saint-Venant solutions, ASME, J. Appl. mech. 68, No. 3, 376-381 (2001) · Zbl 1110.74419 · doi:10.1115/1.1363598
[6] El Fatmi, R.: Non-uniform warping including the effects of torsion and shear forces. Part I: a general beam theory, Int. J. Solids struct. 44, 5912-5929 (2007) · Zbl 1186.74067 · doi:10.1016/j.ijsolstr.2007.02.006
[7] El Fatmi, R.: Non-uniform warping including the effects of torsion and shear forces. Part II: Analytical and numerical applications, Int. J. Solids struct. 44, 5930-5952 (2007) · Zbl 1186.74068 · doi:10.1016/j.ijsolstr.2007.02.005
[8] El Fatmi, R.; Zenzri, H.: On the structural behavior and the Saint-Venant solution in the exact beam theory. Application to laminated composite beams, Comput. struct. 80, 1441-1456 (2002)
[9] El Fatmi, R.; Zenzri, H.: A numerical method for the exact beam theory. Application to homogeneous and laminated beams, Int. J. Solids struct. 41, 2521-2537 (2004) · Zbl 1179.74144 · doi:10.1016/j.ijsolstr.2003.12.011
[10] Giavotto, V.; Borri, M.; Mantegazza, P.; Ghiringhelli, G.; Carmaschi, V.; Maffioli, G. C.; Mussi, F.: Anisotropic beam theory and applications, Comput. struct. 16, 403-413 (1983) · Zbl 0499.73066 · doi:10.1016/0045-7949(83)90179-7
[11] Goetschel, D. B.; Hu, T. B.: Quantification of saint – Venant’s principle for a general prismatic member, Comput. struct. 21, 869-874 (1985) · Zbl 0587.73108 · doi:10.1016/0045-7949(85)90196-8
[12] Herrmann, L. R.: Elastic torsional analysis of irregular shapes, J. engr. Mech. div., ASCE 91, No. EM6, 11-19 (1965)
[13] Horgan, C. O.: Recent developments concerning Saint-Venant’s principle: an update, Arch. rat’l mech. Anal., 295-303 (1989)
[14] Horgan, C. O.; Knowles, J. K.: Recent developments concerning Saint-Venant principle, Adv. appl. Mech. 23, 179-269 (1983) · Zbl 0569.73010 · doi:10.1016/S0065-2156(08)70244-8
[15] Huang, K. H.; Dong, S. B.: Propagating waves and standing vibrations in a composite cylinder, J. sound vibr. 96, 363-379 (1984) · Zbl 0569.73069 · doi:10.1016/0022-460X(84)90363-8
[16] Ieşan, D.: On saint – Venant’s problem, Arch. rat. Mech. anal. 91, 363-373 (1986) · Zbl 0602.73005
[17] Johnson, M. W.; Little, R. W.: The semi-infinite strip, Quart. appl. Math. 22, 335-344 (1965)
[18] Kazic, M.; Dong, S. B.: Analysis of restrained torsion, J. eng. Mech. div. 116, 870-891 (1990)
[19] Knowles, J. K.: On saint – Venant’s principle in the two-dimensional linear theory of elasticity, Arch. rat. Mech. anal. 22, 1-22 (1966)
[20] Kosmatka, J. B.; Lin, H. C.; Dong, S. B.: On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder. Part II: Cross-sectional properties, ASME J. Appl. mech. 68, No. 3, 382-391 (2001) · Zbl 1110.74513 · doi:10.1115/1.1365152
[21] Ladevéze, P.; Simmonds, J.: New concepts for linear beam theory with arbitrary geometry and loading, Eur. J. Mech., A/solids 17, 377-402 (1998) · Zbl 0919.73027 · doi:10.1016/S0997-7538(98)80051-X
[22] Lin, H. C.; Dong, S. B.: On the almansi – michell problems for an inhomogeneous, anisotropic cylinder, J. mech. 22, No. 1, 51-57 (2006)
[23] Lin, H. C.; Dong, S. B.; Kosmatka, J. B.: On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder. Part III. End effects, ASME, J. Appl. mech. 68, No. 3, 392-398 (2001) · Zbl 1110.74561 · doi:10.1115/1.1363597
[24] Little, R. W.; Childs, S. B.: Elastostatic boundary region problem in solid cylinders, Quart. appl. Math. 25, 261-274 (1967) · Zbl 0161.44001
[25] Mason, W. E.; Herrmann, L. R.: Elastic shear analysis of general prismatic beams, J. eng. Mech. div., ASCE, 94 (1968)
[26] Miller, K. L.; Horgan, C. O.: Saint – Venant end effects for plane deformations of elastic composites, Mech. compos. Mater. struct. 2, 203-214 (1995)
[27] Pipes, R. B.; Pagano, N. J.: Interlaminar stresses in composite laminates under uniform axial extension, J. compos. Mater. 4, 538-548 (1970)
[28] Popescu, B.; Hodges, D. H.: On asymptotically correct Timoshenko-like anisotropic beam theory, Int. J. Solids struct. 37, 535-558 (2000) · Zbl 0986.74047 · doi:10.1016/S0020-7683(99)00020-7
[29] Synge, J. L.: The problem of saint Venant for a cylinder with free sides, Quart. appl. Math. 2, 307-317 (1945) · Zbl 0060.41803
[30] Taweel, H.; Dong, S. B.; Kazic, M.: Wave reflection from the free end of a cylinder with an arbitrary cross-section, Int. J. Solids struct. 37, 1701-1726 (2000) · Zbl 0994.74039 · doi:10.1016/S0020-7683(98)00301-1
[31] Toupin, R. A.: Saint – Venant’s principle, Arch rat. Mech. anal. 18, 83-96 (1965) · Zbl 0203.26803 · doi:10.1007/BF00282253
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.