×

Concentration of symmetric eigenfunctions. (English) Zbl 1193.58016

Summary: We examine the concentration and oscillation effects developed by high-frequency eigenfunctions of the Laplace operator in a compact Riemannian manifold. More precisely, we are interested in the structure of the possible invariant semiclassical measures obtained as limits of Wigner measures corresponding to eigenfunctions. These measures describe simultaneously the concentration and oscillation effects developed by a sequence of eigenfunctions. We present some results showing how to obtain invariant semiclassical measures from eigenfunctions with prescribed symmetries. As an application of these results, we give a simple proof of the fact that in a manifold of constant positive sectional curvature, every measure which is invariant by the geodesic flow is an invariant semiclassical measure.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds

References:

[1] Ambrosetti, A.; Badiale, M.; Cingolani, S., Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140, 285-300 (1997) · Zbl 0896.35042
[2] Badiale, M.; D’Aprile, T., Concentration around a sphere for a singularly perturbed Schödinger equation, Nonlinear Anal. TMA, 49, 947-985 (2002) · Zbl 1018.35021
[3] del Pino, M.; Felmer, P. L., Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, 1, 245-265 (1997) · Zbl 0887.35058
[4] del Pino, M.; Kowalczyk, M.; Wei, J.-C., Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., 60, 1, 113-146 (2007) · Zbl 1123.35003
[5] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 397-408 (1986) · Zbl 0613.35076
[6] Gérard, P., Mesures semi-classiques et ondes de Bloch, (Séminaire sur les Équations aux Dérivées Partielles, 1990-1991, Exp. No. XVI. Séminaire sur les Équations aux Dérivées Partielles, 1990-1991, Exp. No. XVI, Sémin. Équ. Dériv. Partielles (1991), École Polytech.: École Polytech. Palaiseau) · Zbl 0739.35096
[7] Gérard, P.; Markowich, P. A.; Mauser, N. J.; Poupaud, F., Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., 50, 4, 323-379 (1997) · Zbl 0881.35099
[8] Lions, P.-L.; Paul, T., Sur les mesures de Wigner, Rev. Mat. Iberoam., 9, 3, 553-618 (1993) · Zbl 0801.35117
[9] Robert, D., (Autour de l’Approximation Semi-Classique. Autour de l’Approximation Semi-Classique, Progress in Mathematics, vol. 68 (1987), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA) · Zbl 0621.35001
[10] De Bièvre, S., Quantum chaos: a brief first visit, (Second Summer School in Analysis and Mathematical Physics. Second Summer School in Analysis and Mathematical Physics, Cuernavaca, 2000. Second Summer School in Analysis and Mathematical Physics. Second Summer School in Analysis and Mathematical Physics, Cuernavaca, 2000, Contemp. Math., vol. 289 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 161-218 · Zbl 1009.81020
[11] Jakobson, D.; Nadirashvili, N.; Toth, J. A., Geometric properties of eigenfunctions, Russian Math. Surveys, 56, 6, 1085-1105 (2001) · Zbl 1060.58019
[12] Folland, G. B., (Harmonic Analysis in Phase Space. Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 122 (1989), Princeton University Press: Princeton University Press Princeton, NJ) · Zbl 0682.43001
[13] Gérard, P.; Leichtnam, E., Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., 71, 2, 559-607 (1993) · Zbl 0788.35103
[14] Schnirelman, A. I., Ergodic properties of eigenfunctions, Uspekhi Mat. Nauk, 29, 6, 181-182 (1974) · Zbl 0324.58020
[15] Colin de Verdière, Y., Ergodicité et fonctions propres du Laplacien, Comm. Math. Phys., 102, 3, 497-502 (1985) · Zbl 0592.58050
[16] Zelditch, S., Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., 55, 4, 919-941 (1987) · Zbl 0643.58029
[17] Helffer, B.; Martinez, A.; Robert, D., Ergodicité et limite semi-classique, Comm. Math. Phys., 109, 2, 313-326 (1987) · Zbl 0624.58039
[18] Rudnick, Z.; Sarnak, P., The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys., 161, 1, 195-213 (1994) · Zbl 0836.58043
[19] Anantharaman, N., Entropy and the localization of eigenfunctions, Ann. of Math., 168, 2, 435-475 (2008) · Zbl 1175.35036
[20] Anantharaman, N.; Nonnenmacher, S., Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier (Grenoble), 57, 7, 2465-2523 (2007) · Zbl 1145.81033
[21] Jakobson, D., Quantum limits on flat tori, Ann. of Math., 145, 2, 235-266 (1997) · Zbl 0874.58088
[22] Toth, J. A., On the quantum expected values of integrable metric forms, J. Differential Geom., 52, 2, 327-374 (1999) · Zbl 0992.53063
[23] Jakobson, D.; Zelditch, S., Classical limits of eigenfunctions for some completely integrable systems, (Emerging Applications of Number Theory. Emerging Applications of Number Theory, Minneapolis, MN, 1996. Emerging Applications of Number Theory. Emerging Applications of Number Theory, Minneapolis, MN, 1996, IMA Vol. Math. Appl., vol. 109 (1999), Springer: Springer New York), 329-354 · Zbl 1071.58505
[24] Macià, F., Some remarks on quantum limits on Zoll manifolds, Comm. Partial Differential Equations, 33, 4-6, 1137-1146 (2008) · Zbl 1144.58016
[25] Wolf, J. A., Spaces of Constant Curvature (1967), McGraw-Hill Book Co.: McGraw-Hill Book Co. New York, London, Sydney · Zbl 0162.53304
[26] Hall, M., (Combinatorial Theory. Combinatorial Theory, Wiley-Interscience Series in Discrete Mathematics (1986), A Wiley-Interscience Publication, John Wiley & Sons, Inc.: A Wiley-Interscience Publication, John Wiley & Sons, Inc. New York) · Zbl 0588.05001
[27] Macià, F., Semiclassical measures and the Schrödinger flow in Riemannian manifolds, Nonlinearity, 22, 1003-1020 (2009) · Zbl 1166.81020
[28] Ikeda, A., On the spectrum of a Riemannian manifold of positive constant curvature, Osaka J. Math., 17, 1, 75-93 (1980) · Zbl 0436.58025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.