×

Randomness in deterministic difference equations. (English) Zbl 1193.37014

Consider an absolutely continuous probability measure \(\mu\) on the circle \(\mathbb{T}^1\), and a \(\mu\)-preserving continuous, piecewise monotone, absolutely continuous and mixing map \(f: \mathbb{T}^1\to \mathbb{T}^1\). Consider also a continuous map \(\varphi: \mathbb{T}^1\to\mathbb{T}^1\), and define the continuous function \(x: \mathbb{R}_+\to \mathbb{T}^1\) by: \(x:= \varphi\) on \([0,1[\), and \(x(t):= f^n\circ\varphi(t- n)\) for \(n\in\mathbb{N}^*\), \(n\leq t< n+1\). Then, under some technical additinal assumptions, the author establishes in articular the finite-dimensional marginals \((x(T+ t_1),\dots, x(T+ t_n))\), for \(t_1<\cdots< t_n\), converge to \(\mu^{\otimes n}\) as \(T\to\infty\).
This exhibits an asymptotic behaviour of the deterministic function \(x\) of chaotic-stochastic type. A somewhat more general result is actually proved.

MSC:

37A50 Dynamical systems and their relations with probability theory and stochastic processes
39A14 Partial difference equations
Full Text: DOI

References:

[1] DOI: 10.1007/s00222-003-0307-6 · Zbl 1050.37018 · doi:10.1007/s00222-003-0307-6
[2] Billingsley P., Convergence of Probability Measures (1968) · Zbl 0172.21201
[3] DOI: 10.1090/S0002-9947-1911-1500888-5 · doi:10.1090/S0002-9947-1911-1500888-5
[4] DOI: 10.1007/BF02398269 · Zbl 0006.16802 · doi:10.1007/BF02398269
[5] Cornfeld I.P., Ergodic Theory (1982)
[6] Cramer H., Stationary and Related Stochastic Processes (1967) · Zbl 0162.21102
[7] DOI: 10.1007/BF01941800 · Zbl 0497.58017 · doi:10.1007/BF01941800
[8] DOI: 10.1007/BF02096623 · Zbl 0763.58024 · doi:10.1007/BF02096623
[9] Kuratowski K., Topology 2 (1966) · Zbl 0158.40901
[10] DOI: 10.2307/3597183 · Zbl 1160.37356 · doi:10.2307/3597183
[11] Natanson I.P., Theory of Functions of a Real Variable (1967)
[12] DOI: 10.1007/s11253-007-0006-3 · Zbl 1142.39306 · doi:10.1007/s11253-007-0006-3
[13] DOI: 10.1155/S1687183904310058 · Zbl 1079.39011 · doi:10.1155/S1687183904310058
[14] Prigogine I., Entre le Temps et l’Éternité (1992)
[15] DOI: 10.1016/S0898-1221(98)80038-2 · Zbl 0933.39036 · doi:10.1016/S0898-1221(98)80038-2
[16] DOI: 10.1080/1023619021000047707 · Zbl 1025.39005 · doi:10.1080/1023619021000047707
[17] DOI: 10.1007/s11253-006-0122-5 · Zbl 1113.37036 · doi:10.1007/s11253-006-0122-5
[18] DOI: 10.1007/BF02375370 · Zbl 0936.37021 · doi:10.1007/BF02375370
[19] DOI: 10.1111/j.1934-6093.2006.tb00255.x · doi:10.1111/j.1934-6093.2006.tb00255.x
[20] DOI: 10.1142/S0218127492000045 · Zbl 0899.76238 · doi:10.1142/S0218127492000045
[21] Sharkovsky A.N., Proc. Steklov Inst. Math. Moscow 244 pp 264– (2004)
[22] Sharkovsky, A.N. and Romanenko, E.Yu. 2005.Turbulence: Ideal, Encyclopedia of Nonlinear Science (ed. Alwyn Scott), 955–957. New York and London: Routledge.
[23] Sharkovsky A.N., Difference Equations and Their Applications (Ser. Mathematics and Its Applications, v.250) (1993)
[24] DOI: 10.1070/SM2001v192n04ABEH000559 · Zbl 1022.47025 · doi:10.1070/SM2001v192n04ABEH000559
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.