×

Pointwise convergence of ergodic averages along cubes. (English) Zbl 1193.37005

Summary: Let \((X, B, \mu ,T)\) be a measure preserving system. We prove the pointwise convergence of ergodic averages along cubes of \(2^k - 1\) bounded and measurable functions for all \(k\). We show that this result can be derived from estimates about bounded sequences of real numbers and apply these estimates to establish the pointwise convergence of some weighted ergodic averages and ergodic averages along cubes for not necessarily commuting measure preserving transformations.

MSC:

37A05 Dynamical aspects of measure-preserving transformations
Full Text: DOI

References:

[1] I. Assani, Pointwise convergence along cubes for measure preserving systems, preprint, 2003; available at www.arxiv.org. math.DS/0311274.
[2] I. Assani, Wiener Wintner Ergodic Theorems, World Scientific, Singapore, 2003. · Zbl 1041.37004
[3] I. Assani, Averages along cubes for not necessarily commuting measure preserving transformations, Contemp. Math. 430 (2007) 1–19. · Zbl 1122.37002
[4] D. Berend, Joint ergodicity and mixing, J. Analyse Math. 45 (1985) 255–284. · Zbl 0595.28020 · doi:10.1007/BF02792552
[5] V. Bergelson, The multifarious Poincare Recurrence theorem, in Descriptive Set Theory and Dynamical Systems (M. Foreman, A. S. Kechris, A. Louveau and B. Weiss eds.) Cambridge University Press, New York 2000, pp. 31–57. · Zbl 0957.05105
[6] J. Bourgain, Double recurrence and almost sure convergence, J. Reine Angew.Math. 404 (1990) 140–161. · Zbl 0685.28008 · doi:10.1515/crll.1990.404.140
[7] C. Demeter, T. Tao and C. Thiele, Maximal multilinear operators, Trans. Amer. Math. Soc. 360 (2008) 4989–5042. · Zbl 1268.42034 · doi:10.1090/S0002-9947-08-04474-7
[8] N. Frantzikinakis and B. Kra, Convergence of multiple ergodic averages for some commuting transformations, Ergodic Theory Dynam. Systems 25 (2005) 799–809. · Zbl 1140.37300 · doi:10.1017/S0143385704000616
[9] H. Furstenberg and B. Weiss, A mean ergodic theorem for \( \frac{1} {N}\sum\nolimits_{n = 1}^N {f(T^n x)g(T^{n^2 } x)} \) , in Convergence in Ergodic Theory and Probability (V. Bergelson, P. March and T. Rosenblatt, eds.) Walter de Gruyter, Berlin, New York, 1996, pp. 193–227. · Zbl 0869.28010
[10] W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001) 465–588. · Zbl 1028.11005 · doi:10.1007/s00039-001-0332-9
[11] B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005) 397–488. · Zbl 1077.37002 · doi:10.4007/annals.2005.161.397
[12] A. Y. Khintchine, Eine Verscharfung des Poincareschen ”Wiederkehrsatzes”, Compositio Math. 1 (1934) 177–179. · Zbl 0008.35204
[13] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. · Zbl 0281.10001
[14] A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations of a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005) 201–113. · Zbl 1080.37003 · doi:10.1017/S0143385704000215
[15] A. Leibman, Lower bounds for ergodic averages, Ergodic Theory Dynam. Systems 22 (2002) 863–872. · Zbl 1008.37002 · doi:10.1017/S0143385702000433
[16] M. Schwartz, Polynomially moving ergodic averages, Proc. Amer. Math. Soc. 103 (1988) 252–254. · Zbl 0642.28008 · doi:10.1090/S0002-9939-1988-0938678-0
[17] T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007) 53–97. · Zbl 1198.37014 · doi:10.1090/S0894-0347-06-00532-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.