×

Analysis of a nonautonomous delayed predator-prey system with a stage structure for the predator in a polluted environment. (English) Zbl 1193.34172

Summary: A two-species nonautonomous Lotka-Volterra type model with diffusional migration among the immature predator population, constant delay among the matured predators, and toxicant effect on the immature predators in a nonprotective patch is proposed. The scale of the protective zone among the immature predator population can be regulated through diffusive coefficients \(D_{i}(t), i=1,2\). It is proved that this system is uniformly persistent (permanence) under appropriate conditions. Sufficient conditions are derived to confirm that if this system admits a positive periodic solution, then it is globally asymptotically stable.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
92D25 Population dynamics (general)
34K25 Asymptotic theory of functional-differential equations
34K20 Stability theory of functional-differential equations
34K13 Periodic solutions to functional-differential equations

References:

[1] G. E. Hutchinson, A Treatise on Limnology, vol. 1, John Wiley & Sons, New York, NY, USA, 1957.
[2] E. C. Tsivoglou, Tracer Measurement of Stream Reaeration, Water Pollution Control Administration, Washington, DC, USA, 1970.
[3] G. E. Russell-Hunter, Aquatic Productivity, Collier Macmillan, Toronto, Canada, 1970.
[4] N. L. Miller, “Stability analysis of toxic substances within aquatic ecosystems and their effect on aquatic populations,” Ecological Modelling, vol. 60, no. 2, pp. 151-165, 1992. · doi:10.1016/0304-3800(92)90044-F
[5] J. R. E. Jones, Fish and River Pollution, Butterworths, Washington, DC, USA, 1964.
[6] G. Howells, Acid Rain and Acid Water, Ellis Horwood, Chichester, UK, 1990.
[7] S. A. Nelson, “The problem of oil pollution of the sea,” in Advances in Marine Biology, Academic Press, London, UK, 1970.
[8] J. B. Shukla, H. I. Freedman, V. N. Pal, O. P. Misra, M. Agarwal, and A. Shukla, “Degradation and subsequent regeneration of a forestry resource: a mathematical model,” Ecological Modelling, vol. 44, no. 3-4, pp. 219-229, 1989. · doi:10.1016/0304-3800(89)90031-8
[9] J. N. Woodman and E. B. Cowling, “Airborne chemicals and forest health: convincing data are lacking to prove the case for injury caused by atmospheric pollutants other than ozone,” Environmental Science and Technology, vol. 21, no. 2, pp. 120-126, 1987. · doi:10.1021/es00156a001
[10] C. N. Haas, “Application of predator-prey models to disinfection,” Journal of the Water Pollution Control Federation, vol. 53, no. 3I, pp. 378-386, 1981.
[11] A. L. Jensen and J. S. Marshall, “Application of a surplus production model to assess environmental impacts on exploited populations of Daphnia pulex in the laboratory,” Environmental Pollution Series A, vol. 28, no. 4, pp. 273-280, 1982. · doi:10.1016/0143-1471(82)90143-X
[12] T. G. Hallam and C. E. Clark, “Nonautonomous logistic equations as models of populations in a deteriorating environment,” Journal of Theoretical Biology, vol. 93, no. 2, pp. 303-311, 1981. · doi:10.1016/0022-5193(81)90106-5
[13] T. G. Hallam, C. E. Clark, and G. S. Jordan, “Effects of toxicants on populations: a qualitative approach. II. First order kinetics,” Journal of Mathematical Biology, vol. 18, no. 1, pp. 25-37, 1983. · Zbl 0548.92019 · doi:10.1007/BF00275908
[14] T. G. Hallam, C. E. Clark, and R. R. Lassiter, “Effects of toxicants on populations: a qualitative approach. I. Equilibrium environmental exposure,” Ecological Modelling, vol. 18, no. 4, pp. 291-304, 1983. · Zbl 0548.92018 · doi:10.1016/0304-3800(83)90019-4
[15] T. G. Hallam and J. T. De Luna, “Effects of toxicants on populations: a qualitative approach. III. Environmental and food chain pathways,” Journal of Theoretical Biology, vol. 109, no. 3, pp. 411-429, 1984. · doi:10.1016/S0022-5193(84)80090-9
[16] J. T. De Luna and T. G. Hallam, “Effects of toxicants on populations: a qualitative approach IV. Resource-consumer-toxicant models,” Ecological Modelling, vol. 35, no. 3-4, pp. 249-273, 1987. · doi:10.1016/0304-3800(87)90115-3
[17] M. Zhien, C. Guirong, and W. Wendi, “Persistence and extinction of a population in a polluted environment,” Mathematical Biosciences, vol. 101, no. 1, pp. 75-97, 1990. · Zbl 0714.92027 · doi:10.1016/0025-5564(90)90103-6
[18] L. Huaping and M. Zhien, “The threshold of survival for system of two species in a polluted environment,” Journal of Mathematical Biology, vol. 30, no. 1, pp. 49-61, 1991. · Zbl 0745.92028 · doi:10.1007/BF00168006
[19] H. I. Freedman and J. B. Shukla, “Models for the effect of toxicant in single-species and predator-prey systems,” Journal of Mathematical Biology, vol. 30, no. 1, pp. 15-30, 1991. · Zbl 0825.92125 · doi:10.1007/BF00168004
[20] W. D. Wang and Z. E. Ma, “Permanence of populations in a polluted environment,” Mathematical Biosciences, vol. 122, no. 2, pp. 235-248, 1994. · Zbl 0817.92018 · doi:10.1016/0025-5564(94)90060-4
[21] B. Dubey, “Modelling the effect of toxicant on forestry resources,” Indian Journal of Pure and Applied Mathematics, vol. 28, no. 1, pp. 1-12, 1997. · Zbl 0870.92020
[22] Y. Xiao and L. Chen, “Effects of toxicants on a stage-structured population growth model,” Applied Mathematics and Computation, vol. 123, no. 1, pp. 63-73, 2001. · Zbl 1017.92044 · doi:10.1016/S0096-3003(00)00057-6
[23] M. Ghosh, P. Chandra, and P. Sinha, “A mathematical model to study the effect of toxic chemicals on a prey-predator type fishery,” Journal of Biological Systems, vol. 10, no. 2, pp. 97-105, 2002. · Zbl 1100.92066 · doi:10.1142/S0218339002000524
[24] B. Buonomo and D. Lacitignola, “General conditions for global stability in a single species population-toxicant model,” Nonlinear Analysis: Real World Applications, vol. 5, no. 4, pp. 749-762, 2004. · Zbl 1074.92036 · doi:10.1016/j.nonrwa.2004.05.002
[25] Z. Li, Z. Shuai, and K. Wang, “Persistence and extinction of single population in a polluted environment,” Electronic Journal of Differential Equations, no. 108, pp. 1-5, 2004. · Zbl 1084.92032
[26] G. P. Samanta and A. Maiti, “Dynamical model of a single-species system in a polluted environment,” Journal of Applied Mathematics & Computing, vol. 16, no. 1-2, pp. 231-242, 2004. · Zbl 1052.92056 · doi:10.1007/BF02936164
[27] J. Wang and K. Wang, “Analysis of a single species with diffusion in a polluted environment,” Electronic Journal of Differential Equations, no. 112, pp. 1-11, 2006. · Zbl 1128.34312
[28] J. He and K. Wang, “The survival analysis for a single-species population model in a polluted environment,” Applied Mathematical Modelling, vol. 31, no. 10, pp. 2227-2238, 2007. · Zbl 1128.92046 · doi:10.1016/j.apm.2006.08.017
[29] J. He and K. Wang, “On population in a polluted patchy environment,” Journal of Physics: Conference Series, vol. 96, no. 1, pp. 1-5, 2008. · doi:10.1088/1742-6596/96/1/012010
[30] T. Das, R. N. Mukherjee, and K. S. Chaudhuri, “Harvesting of a prey-predator fishery in the presence of toxicity,” Applied Mathematical Modelling, vol. 33, no. 5, pp. 2282-2292, 2009. · Zbl 1185.91120 · doi:10.1016/j.apm.2008.06.008
[31] R. Xu and Z. Ma, “The effect of stage-structure on the permanence of a predator-prey system with time delay,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1164-1177, 2007. · Zbl 1117.92058 · doi:10.1016/j.amc.2006.12.005
[32] S. Gao, L. Chen, and Z. Teng, “Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator,” Applied Mathematics and Computation, vol. 202, no. 2, pp. 721-729, 2008. · Zbl 1151.34067 · doi:10.1016/j.amc.2008.03.011
[33] J. Wang, Q. Lu, and Z. Feng, “A nonautonomous predator-prey system with stage structure and double time delays,” Journal of Computational and Applied Mathematics, vol. 230, no. 1, pp. 283-299, 2009. · Zbl 1189.34158 · doi:10.1016/j.cam.2008.11.014
[34] X. Zhou, X. Shi, and X. Song, “Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay,” Applied Mathematics and Computation, vol. 196, no. 1, pp. 129-136, 2008. · Zbl 1147.34355 · doi:10.1016/j.amc.2007.05.041
[35] W. J. Manning and W. A. Feder, Biomonitoring Air Pollutants with Plants, Applied Science, Barking, UK, 1980.
[36] T. G. Hallam and Z. E. Ma, “Persistence in population models with demographic fluctuations,” Journal of Mathematical Biology, vol. 24, no. 3, pp. 327-339, 1986. · Zbl 0606.92022 · doi:10.1007/BF00275641
[37] Z. E. Ma and T. G. Hallam, “Effects of parameter fluctuations on community survival,” Mathematical Biosciences, vol. 86, no. 1, pp. 35-49, 1987. · Zbl 0631.92019 · doi:10.1016/0025-5564(87)90062-9
[38] J. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences, Springer, New York, NY, USA, 2nd edition, 1977. · Zbl 0352.34001
[39] X. Song and L. Chen, “Optimal harvesting and stability for a two-species competitive system with stage structure,” Mathematical Biosciences, vol. 170, no. 2, pp. 173-186, 2001. · Zbl 1028.34049 · doi:10.1016/S0025-5564(00)00068-7
[40] M. W. Hirsch, Differential Topology, Springer, New York, NY, USA, 1980.
[41] Z. D. Teng and L. S. Chen, “Positive periodic solutions of periodic Kolmogorov type systems with delays,” Acta Mathematicae Applicatae Sinica, vol. 22, no. 3, pp. 446-456, 1999 (Chinese). · Zbl 0976.34063
[42] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, vol. 74 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992. · Zbl 0752.34039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.