×

Bitopological duality for distributive lattices and Heyting algebras. (English) Zbl 1193.06012

A bitopological space is a triple \((X,\tau_1,\tau_2)\), where \(X\) is a (non-empty) set and \(\tau_1,\tau_2\) are two topologies on \(X\).
In this paper, the authors introduce pairwise Stone spaces as a bitopological generalization of Stone spaces and show that they are exactly the bitopological duals of bounded distributive lattices. Thus, it is proved that the category of pairwise Stone spaces is isomorphic to the category of spectral spaces and to the category of Priestley spaces.
Also, the authors provide the bitopological and spectral descriptions of many algebraic concepts important in the study of distributive lattices. So they give new bitopological and spectral dualities for Heyting algebras, thereby providing two new alternatives to Esakia’s duality.

MSC:

06D50 Lattices and duality
06D20 Heyting algebras (lattice-theoretic aspects)
Full Text: DOI

References:

[1] Stone, Časopis Pešt. Mat. Fys. 67 pp 1– (1937)
[2] DOI: 10.1111/j.1749-6632.1996.tb49171.x · doi:10.1111/j.1749-6632.1996.tb49171.x
[3] DOI: 10.1023/A:1015291410777 · Zbl 1006.06006 · doi:10.1023/A:1015291410777
[4] Salbany, Sigma Ser. Pure Math. 5 pp 481– (1984)
[5] Jung, 17th Conference on Mathematical Foundations of Programming Semantics Electronic Notes in Theoretical Computer Science 45 pp 209– (2001) · Zbl 1260.18002 · doi:10.1016/S1571-0661(04)80964-2
[6] DOI: 10.1016/S1571-0661(05)80160-4 · doi:10.1016/S1571-0661(05)80160-4
[7] Johnstone, Stone spaces (1982)
[8] DOI: 10.2307/1995344 · Zbl 0184.29401 · doi:10.2307/1995344
[9] Harding, Houston Journal of Mathematics 30 pp 937– (2004)
[10] Gierz, Encyclopedia of Mathematics and its Applications 93 (2003)
[11] Esakia, Soviet Math. Dokl. 15 pp 147– (1974)
[12] Gehrke, Math. Japon. 40 pp 207– (1994)
[13] Dvalishvili, North-Holland Mathematics Studies 199 (2005)
[14] Gehrke, Springer-Verlag Lecture Notes in Computer Science 5125 pp 246– (2008) · Zbl 1165.68049 · doi:10.1007/978-3-540-70583-3_21
[15] Cornish, Mat. Vesnik 12 pp 329– (1975)
[16] DOI: 10.1006/aama.2000.0684 · Zbl 0979.06007 · doi:10.1006/aama.2000.0684
[17] DOI: 10.1007/BF00383451 · Zbl 0754.06006 · doi:10.1007/BF00383451
[18] DOI: 10.1016/j.tcs.2004.06.021 · Zbl 1071.68058 · doi:10.1016/j.tcs.2004.06.021
[19] DOI: 10.1007/BF02945121 · Zbl 0288.06015 · doi:10.1007/BF02945121
[20] DOI: 10.1016/0168-0072(91)90065-T · Zbl 0737.03006 · doi:10.1016/0168-0072(91)90065-T
[21] Salbany, Mathematical Monographs of the University of Cape Town 1 (1974)
[22] Reilly, Indag. Math. 35 pp 127– (1973) · doi:10.1016/1385-7258(73)90046-2
[23] DOI: 10.1016/S0304-0208(08)73814-3 · doi:10.1016/S0304-0208(08)73814-3
[24] DOI: 10.1112/plms/s3-24.3.507 · Zbl 0323.06011 · doi:10.1112/plms/s3-24.3.507
[25] DOI: 10.1112/blms/2.2.186 · Zbl 0201.01802 · doi:10.1112/blms/2.2.186
[26] Lawson, Topology and category theory in computer science (Oxford, 1989) pp 179– (1991)
[27] DOI: 10.1016/0166-8641(95)00116-X · Zbl 0858.54001 · doi:10.1016/0166-8641(95)00116-X
[28] DOI: 10.1112/plms/s3-13.1.71 · Zbl 0107.16401 · doi:10.1112/plms/s3-13.1.71
[29] DOI: 10.1112/jlms/s2-45.2.321 · Zbl 0760.54018 · doi:10.1112/jlms/s2-45.2.321
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.