×

Approximating the cut-norm via Grothendieck’s inequality. (English) Zbl 1192.68866

Proceedings of the 36th annual ACM symposium on theory of computing (STOC 2004), Chicago, IL, USA, June 13 - 15, 2004. New York, NY: ACM Press (ISBN 1-58113-852-0). 72-80, electronic only (2004).
Abstract: The cut-norm \(\|A\|_C\) of a real matrix \(A=(a_{ij})_{i\in R,j\in S}\) is the maximum, over all \(I \subset R\), \(J \subset S\), of the quantity \(|\sum_{i \in I, j\in J} a_{ij}|\). This concept plays a major role in the design of efficient approximation algorithms for dense graph and matrix problems. Here we show that the problem of approximating the cut-norm of a given real matrix is MAX SNP hard, and we provide an efficient approximation algorithm. This algorithm finds, for a given matrix \(A=(a_{ij})_{i\in R,j\in S}\), two subsets \(I \subset R\) and \(J \subset S\), such that \(|\sum_{i \in I, j\in J} a_{ij}|\geq \rho\|A\|_C\), where \(\rho>0\) is an absolute constant satisfying \(\rho >0.56\). The algorithm combines semidefinite programming with a rounding technique based on Grothendieck’s inequality. We present three known proofs of Grothendieck’s inequality, with the necessary modifications which emphasize their algorithmic aspects. These proofs contain rounding techniques which go beyond the random hyperplane rounding of M. X. Goemans and D. P. Williamson [J. Assoc. Comput. Mach. 42, 1115–1145 (1995; Zbl 0885.68088)], allowing us to transfer various algorithms for dense graph and matrix problems to the sparse case.
For an extended version, see the publication in [SIAM J. Comput. 35, No. 4, 787–803 (2006; Zbl 1096.68163)].
For the entire collection see [Zbl 1074.68504].

MSC:

68W25 Approximation algorithms
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
65D15 Algorithms for approximation of functions
90C22 Semidefinite programming
90C27 Combinatorial optimization
Full Text: DOI

References:

[1] N. Alon, L. Babai and A. Itai, A fast and simple randomized parallel algorithm for the maximal independent set problem, J. Algorithms 7(1986), 567-583.]] 10.1016/0196-6774(86)90019-2 · Zbl 0631.68063
[2] N. Alon, W. F. de la Vega, R. Kannan and M. Karpinski, Random sampling and approximation of MAX-CSP problems, Proc. of the 34th ACM STOC, ACM Press (2002), 232-239.]] 10.1145/509907.509945 · Zbl 1192.68865
[3] N. Alon, R. A. Duke, H. Lefmann, V. Rodl and R. Yuster, The algorithmic aspects of the Regularity Lemma, Proc. 33rd IEEE FOCS, Pittsburgh, IEEE (1992), 473-481. Also: J. of Algorithms 16 (1994), 80-109.]] 10.1006/jagm.1994.1005 · Zbl 0794.05119
[4] N. Alon, Y. Matias and M. Szegedy, The space complexity of approximating the frequency moments, Proc. of the 28th ACM STOC, ACM Press (1996), 20-29. Also; J. Comp. Sys. Sci. 58 (1999), 137-147.]] 10.1006/jcss.1997.1545 · Zbl 0938.68153
[5] N. Alon and J. Spencer, The Probabilistic Method, Second Edition, Wiley, New York, 2000.]] · Zbl 0996.05001
[6] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and intractability of approximation problems, Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society Press, 1992, 14-23.]] · Zbl 0977.68539
[7] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.]] · Zbl 0855.47016
[8] A. M. Frieze and R. Kannan, Quick Approximation to matrices and applications, Combinatorica 19 (2) (1999) pp 175-200.]] · Zbl 0933.68061
[9] U. Feige and M. Langberg, The RPR2 Rounding Technique for Semidefinite Programs, Proceedings of the 28th International Colloquium on Automata, Languages and Programming, Crete, Greece, 2001, 213-224.]] · Zbl 0986.90041
[10] M. Grotschel, L. Lovasz and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981), 169-197.]] · Zbl 0492.90056
[11] A. Grothendieck, Resume de la theorie metrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paulo 8 (1953), 1-79.]] · Zbl 0074.32303
[12] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM 42 (1995), 1115-1145.]] 10.1145/227683.227684 · Zbl 0885.68088
[13] U. Haagerup, A new upper bound for the complex Grothendieck constant, Israel J. Math. 60 (1987), 199-224.]] · Zbl 0646.46019
[14] J. Haastad, Some optimal inapproximability results, J. ACM 48 (2001), 798-859.]] 10.1145/502090.502098 · Zbl 1127.68405
[15] G. J. O. Jameson, Summing and nuclear norms in Banach space theory, London Mathematical Society Student Texts, 8, Cambridge University Press, Cambridge, 1987.]] · Zbl 0634.46007
[16] W. B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, 1-84, North-Holland, Amsterdam, 2001.]] · Zbl 1011.46009
[17] H. Konig, On the complex Grothendieck constant in the n-dimensional case, London Math. Soc. Lect. Notes 158 (1990), 181-198.]] · Zbl 0759.46020
[18] J. L. Krivine, Sur la constante de Grothendieck, C. R. Acad. Sci. Paris Ser. A-B 284 (1977), 445-446.]] · Zbl 0366.60010
[19] M. Lewin, D. Livnat and U. Zwick, Improved rounding techniques for the MAX 2-SAT and MAX DI-CUT problems, Proceedings of the 9th Conference on Integer Programming and Combinatorial Optimization, Cambridge, Massachusetts, 2002, 67-82.]] · Zbl 1049.90535
[20] J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in Lp-spaces and their applications, Studia Math. 29 (1968), 275-326.]] · Zbl 0183.40501
[21] S. Mahajan and H. Ramesh, Derandomizing approximation algorithms based on semidefinite programming, SIAM J. Comput. 28 (1999), 1641-1663.]] 10.1137/S0097539796309326 · Zbl 0928.68055
[22] Y. E. Nesterov, Semidefinite relaxation and nonconvex quadratic optimization, Optimization Methods and Software 9 (1998), 141-160.]] · Zbl 0904.90136
[23] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes, J. Comp. Sys. Sci. 43 (1991), 425-440.]] · Zbl 0765.68036
[24] R. E. Rietz, A proof of the Grothendieck inequality, Israel J. Math. 19 (1974), 271-276.]] · Zbl 0321.46018
[25] E. Szemeredi, Regular partitions of graphs, in: Proc. Colloque Inter. CNRS (J. -C. Bermond, J. -C. Fournier, M. Las Vergnas and D. Sotteau eds. ), 1978, 399-401.]] · Zbl 0413.05055
[26] A. Tanay, R. Sharan, M. Kupiec and R. Shamir, Revealing Modularity and Organization in the Yeast Molecular Network by Integrated Analysis of Highly Heterogeneous Genome-Wide Data, Proceedings of the National Academy of Sciences USA, 101 (2004), 2981-2986.]]
[27] A. Tanay, R. Sharan and R. Shamir, Discovering Statistically Significant Biclusters in Gene Expression Data, Bioinformatics 18 (1) (2002), 136-144.]]
[28] U. Zwick, Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems, Proceedings of the 31th Annual ACM Symposium on Theory of Computing (STOC), Atlanta, Georgia, 1999, 679-687.]] 10.1145/301250.301431 · Zbl 1345.90064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.