×

Critical points index for vector functions and vector optimization. (English) Zbl 1191.90059

Summary: We study the critical points of vector functions from \(\mathbb R^{n}\) to \(\mathbb R^{m}\) with \(n\geq m\), following the definition introduced by Smale in the context of vector optimization. The local monotonicity properties of a vector function around a critical point which are invariant with respect to local coordinate changes are considered. We propose a classification of critical points through the introduction of a generalized Morse index for a critical point, consisting of a triplet of nonnegative integers. The proposed index is based on the sign of an appropriate invariant vector-valued second-order differential.

MSC:

90C29 Multi-objective and goal programming
Full Text: DOI

References:

[1] Arnol’D, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Birkhauser, Boston (1985)
[2] Smale, S.: Global analysis and economics I: Pareto optimum and a generalization of Morse theory. In: Peixoto, M. (ed.) Dynamical Systems, pp. 531–534. Academic, New York (1973) · Zbl 0269.58009
[3] Smale, S.: Optimizing several functions. In: Manifolds, Tokyo, 1973, pp. 69–75. University Tokyo Press, Tokyo (1975)
[4] Miglierina, E., Molho, E., Rocca, M.: A Morse-type index for critical points of vector functions. Quaderno di Ricerca 2007/2, Dipartimento di Economia, Universita’ dell’Insubria. http://eco.uninsubria.it/dipeco/Quaderni/files/QF2007_2.pdf · Zbl 1191.90059
[5] Degiovanni, M., Lucchetti, R., Ribarska, N.: Critical point theory for vector valued functions. J. Convex Anal. 9, 415–428 (2002) · Zbl 1023.49008
[6] Miglierina, E.: Slow solutions of a differential inclusion and vector optimization. Set-Valued Anal. 12(3), 345–356 (2004) · Zbl 1048.49018 · doi:10.1023/B:SVAN.0000031332.10564.f0
[7] Jongen, H.Th., Jonker, P., Twilt, F.: Nonlinear Optimization in Finite Dimensions. Morse Theory, Chebyshev Approximation, Transversality, Flows, Parametric Aspects. Kluwer Academic, Dordrecht (2000) · Zbl 0985.90083
[8] Mather, J.: Stability of C mappings: VI. The nice dimensions. In: Wall, C.T.C. (ed.) Proc. Liverpool Singularities-Symp. I, pp. 207–253. Springer, Berlin (1971) · Zbl 0211.56105
[9] Whitney, H.: On singularities of mappings of Euclidean spaces I. Mappings of the plane into the plane. Ann. Math. 62, 374–410 (1955) · Zbl 0068.37101 · doi:10.2307/1970070
[10] Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic, Orlando (1985) · Zbl 0566.90053
[11] Giannessi, F.: Constrained Optimization and Image Space Analysis. Separation of Sets and Optimality Conditions, vol. I. Springer, New York (2005) · Zbl 1082.49001
[12] Mubarakzyanov, R.G.: Some improvements of the estimates in our paper: Intersection of a space and a polyhedral cone. Sov. Math. (Iz. VUZ) 35(12), 87–89 (1995) · Zbl 0790.68084
[13] Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, Chichester (1999) · Zbl 0912.15003
[14] Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Springer, New York (1973) · Zbl 0294.58004
[15] Guerraggio, A., Molho, E., Zaffaroni, A.: On the notion of proper efficiency in vector optimization. J. Optim. Theory Appl. 82, 1–21 (1994) · Zbl 0827.90123 · doi:10.1007/BF02191776
[16] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998) · Zbl 0888.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.