×

Orbit of the diagonal in the power of a nilmanifold. (English) Zbl 1191.37016

The article deals with orbits of the diagonal element \((a,\dots,a)\) of \(X^r\) under the action \((a^{p_1(n)},\dots,a^{p_r(n)})\), where \(p_i\) are integer-valued polynomials in \(m\) integer variables, \(X\) is a nilmanifold (a compact homogeneous space of a nilpotent Lie group \(G\)), \(a \in G\). The author gives an explicit description of the closure of the orbit of the diagonal in the case that all \(p_i\) are linear, in the case that \(G\) is connected, and in the case that the identity component of \(G\) is commutative; in the general case the description of the orbit is also presented, however, it is not explicit.
The article contains the following sections: 0. Introduction; 1. Orbits in a manifold; 2. Characteristic factors, natural factors of nilmanifolds, and complexity; 3. Spans; 4. A group of polynomial mappings to a nilpotent group; 5. A subgroup of \(G^r\) associated with a subgroup of \({\mathbb Z}^r\); 6. The orbit of the diagonal under a system of linear actions; 7. Polynomial orbits on tori; 8. A system of polynomials actions — the case of a connected group; 9. A system of polynomials actions — the case of a Weil group; 10. Contribution of a polynomial orbit of a point; 11. The general case — an algorithm; 12. A filtration of \({\mathcal G}\); 13. The general case — estimation of complexity.
As the author states, the knowledge of the orbit of the diagonal allows to calculate limits of the form \[ \lim_{N \to \infty} \;\frac1{N^m} \sum_{n \in \{1,\dots,N\}^m} \mu (T^{p_1(n)}A_1 \cap \dots \cap T^{p_r(n)}A_r), \] where \(T\) is a measure-preserving transformation of a finite measure space \((Y,\mu)\) and \(A_i\) are subsets of \(Y\) and limits of the form \[ \lim_{N \to \infty} \;\frac1{N^m} \sum_{n \in \{1,\dots,N\}^m} d((A_1 + p_1(n)) \cap \dots \cap A_r + p_r(n)), \] where \(A_i\) are subsets of \({\mathbb Z}\) and \(d(A)\) is the density of \(A\) in \({\mathbb Z}\).

MSC:

37C99 Smooth dynamical systems: general theory
22E25 Nilpotent and solvable Lie groups
Full Text: DOI

References:

[1] Vitaly Bergelson, The multifarious Poincaré recurrence theorem, Descriptive set theory and dynamical systems (Marseille-Luminy, 1996) London Math. Soc. Lecture Note Ser., vol. 277, Cambridge Univ. Press, Cambridge, 2000, pp. 31 – 57. · Zbl 0957.05105
[2] Vitaly Bergelson, Bernard Host, and Bryna Kra, Multiple recurrence and nilsequences, Invent. Math. 160 (2005), no. 2, 261 – 303. With an appendix by Imre Ruzsa. · Zbl 1087.28007 · doi:10.1007/s00222-004-0428-6
[3] V. Bergelson, A. Leibman, and E. Lesigne, Complexities of finite families of polynomials, Weyl systems, and constructions in combinatorial number theory, J. Anal. Math. 103 (2007), 47 – 92. · Zbl 1146.37007 · doi:10.1007/s11854-008-0002-z
[4] V. Bergelson, A. Leibman, and E. Lesigne, Intersective polynomials and the polynomial Szemerédi theorem, Adv. Math. 219 (2008), no. 1, 369 – 388. · Zbl 1156.11007 · doi:10.1016/j.aim.2008.05.008
[5] Nikos Frantzikinakis, Multiple ergodic averages for three polynomials and applications, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5435 – 5475. · Zbl 1158.37006
[6] Nikos Frantzikinakis and Bryna Kra, Polynomial averages converge to the product of integrals, Israel J. Math. 148 (2005), 267 – 276. Probability in mathematics. · Zbl 1155.37303 · doi:10.1007/BF02775439
[7] Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204 – 256. · Zbl 0347.28016 · doi:10.1007/BF02813304
[8] T. Gowers and J. Wolf, The true complexity of a system of linear equations, preprint. · Zbl 1243.11010
[9] Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397 – 488. · Zbl 1077.37002 · doi:10.4007/annals.2005.161.397
[10] Bernard Host and Bryna Kra, Convergence of polynomial ergodic averages, Israel J. Math. 149 (2005), 1 – 19. Probability in mathematics. · Zbl 1085.28009 · doi:10.1007/BF02772534
[11] A. Leibman, Polynomial sequences in groups, J. Algebra 201 (1998), no. 1, 189 – 206. · Zbl 0908.20029 · doi:10.1006/jabr.1997.7269
[12] A. Leibman, Polynomial mappings of groups, Israel J. Math. 129 (2002), 29 – 60. · Zbl 1007.20035 · doi:10.1007/BF02773152
[13] A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 201 – 213. · Zbl 1080.37003 · doi:10.1017/S0143385704000215
[14] A. Leibman, Pointwise convergence of ergodic averages for polynomial actions of \Bbb Z^{\?} by translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 215 – 225. · Zbl 1080.37004 · doi:10.1017/S0143385704000227
[15] A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. Math. 146 (2005), 303 – 315. · Zbl 1080.37002 · doi:10.1007/BF02773538
[16] A. Leibman, Host-Kra and Ziegler factors, and convergence of multiple averages (appendix to V. Bergelson, Combinatorial and Diophantine Applications of Ergodic Theory), Handbook of Dynamical Systems, vol. 1B, B. Hasselblatt and A. Katok, eds., Elsevier, 2005, pp. 841-853.
[17] A. Leibman, Rational sub-nilmanifolds of a compact nilmanifold, Ergodic Theory Dynam. Systems 26 (2006), no. 3, 787 – 798. · Zbl 1095.37002 · doi:10.1017/S014338570500057X
[18] A. Leibman, Orbits on a nilmanifold under the action of a polynomial sequence of translations, Ergodic Theory Dynam. Systems 27 (2007), no. 4, 1239 – 1252. · Zbl 1121.37005 · doi:10.1017/S0143385706000940
[19] Emmanuel Lesigne, Sur une nil-variété, les parties minimales associées à une translation sont uniquement ergodiques, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 379 – 391 (French, with English summary). · Zbl 0709.28012 · doi:10.1017/S0143385700006209
[20] Nimish A. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements, Lie groups and ergodic theory (Mumbai, 1996) Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 229 – 271. · Zbl 0951.22006
[21] A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. 9 (1962), 276-307.
[22] T. Ziegler, A non-conventional ergodic theorem for a nilsystem, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1357 – 1370. · Zbl 1099.37002 · doi:10.1017/S0143385703000518
[23] Tamar Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), no. 1, 53 – 97. · Zbl 1198.37014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.