×

Local rings of rings of quotients. (English) Zbl 1191.16018

Let \(a\) be an element of a ring \(R\). The ring \(R_a\) that is obtained by defining on the Abelian group \((aRa,+)\) the multiplication \(axa\cdot aya=axaya\) is called the local ring of \(R\) at \(a\). This concept was introduced by K. Meyberg in 1972 in the nonassociative context of Jordan systems.
The primary purpose of the paper under review is to characterize those elements \(a\in R\) for which forming the local ring at \(a\) and forming a quotient ring \(Q\) are interchangeable operations, that is, to determine under what conditions \(Q(R)_a\cong Q(R_a)\), where \(Q(R)\) stands for the maximal ring of left quotients of \(R\), the Martindale symmetric ring of quotients, or the maximal symmetric ring of quotients.
It turns out that in case \(R\) is semiprime the two operations commute for all three types of quotient rings precisely when \(a\) is von Neumann regular in \(Q(R)\), that is, if there exists \(q\in Q(R)\) such that \(aqa=a\). As a corollary, it is shown that if \(R\) is a prime ring and \(R_a\) is a PI-ring for some \(a\in R\), then the maximal ring of left quotients \(Q^\ell_{\max}(R)\) of \(R\) is a primitive ring with nonzero socle.

MSC:

16N60 Prime and semiprime associative rings
16S85 Associative rings of fractions and localizations
16E50 von Neumann regular rings and generalizations (associative algebraic aspects)
16R20 Semiprime p.i. rings, rings embeddable in matrices over commutative rings
Full Text: DOI

References:

[1] Amitsur, S.A.: On rings of quotients. Sympos. Math. 8, 149–164 (1972) · Zbl 0263.16003
[2] Ánh, P.N., Márki, L.: Left orders in regular rings with minimum condition for principal one-sided ideals. Math. Proc. Cambridge Philos. Soc. 109, 323–333 (1991) · Zbl 0728.16008 · doi:10.1017/S0305004100069784
[3] Ánh, P.N., Márki, L.: On Martindale’s theorem. Rocky Mt. J. Math. 26, 481–483 (1996) · Zbl 0860.16018 · doi:10.1216/rmjm/1181072069
[4] Aranda Pino, G., Gómez Lozano, M., Siles Molina, M.: Morita invariance and maximal left quotient rings. Comm. Algebra 32(8), 3247–3256 (2004) · Zbl 1075.16014 · doi:10.1081/AGB-120039289
[5] Beidar, K.I., Martindale III, W.S., Mikhalev, A.V.: Rings with generalized identities. In: Pure and Applied Mathematics, vol. 196. Marcel Dekker, New York (1996) · Zbl 0847.16001
[6] Compañy Cabezos, M., Gómez Lozano, M., Siles Molina, M.: Exchange morita rings. Comm. Algebra 29(2), 907–925 (2001) · Zbl 1008.16011 · doi:10.1081/AGB-100001551
[7] Fernández López, A., García Rus, E., Gómez Lozano, M., Siles Molina, M.: Goldie theorems for associative pairs. Comm. Algebra 26(9), 2987–3020 (1998) · Zbl 0911.17001 · doi:10.1080/00927879808826324
[8] Gómez Lozano, M., Siles Molina, M.: Quotient rings and Fountain-Gould left orders by the local approach. Acta Math. Hungar. 97(4), 179–193 (2002) · Zbl 1066.16019 · doi:10.1023/A:1021609214797
[9] Lam, T.Y.: Lectures on Modules and Rings. Grad. Texts in Math, vol. 189. Springer, New York (1999) · Zbl 0911.16001
[10] Lambek, J.: Lectures on Rings and Modules. Chelsea, New York (1976) · Zbl 0365.16001
[11] Lanning, S.: The maximal symmetric ring of quotients. J. Algebra 179, 47–91 (1996) · Zbl 0839.16020 · doi:10.1006/jabr.1996.0003
[12] Martindale III, W.S.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12, 576–584 (1969) · Zbl 0175.03102 · doi:10.1016/0021-8693(69)90029-5
[13] Martindale III, W.S.: On semiprime P.I. rings. Proc. Amer. Math. Soc. 40, 365–369 (1973) · Zbl 0268.16009 · doi:10.2307/2039374
[14] Meyberg, K.: Lectures on Algebras and Triple Systems. Lecture Notes. University of Virginia, Charlottesville (1972) · Zbl 0253.17017
[15] Montaner, F.: Local PI-theory of Jordan systems. J. Algebra 216, 302–327 (1999) · Zbl 0990.17025 · doi:10.1006/jabr.1998.7755
[16] Posner, E.C.: Prime rings satisfying a polynomial identity. Proc. Amer. Math. Soc. 11, 180–183 (1960) · Zbl 0215.38101 · doi:10.1090/S0002-9939-1960-0111765-5
[17] Schelter, W.: Two sided rings of quotients. Arch. Math. 24, 274–277 (1973) · Zbl 0269.16001 · doi:10.1007/BF01228210
[18] Utumi, Y.: On quotient rings. Osaka J. Math. 8, 1–18 (1956) · Zbl 0070.26601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.