×

Properties of saddle points for generalized augmented Lagrangian. (English) Zbl 1190.90267

Summary: For inequality constrained optimization problem, we show the existence of local saddle point of generalized augmented Lagrangian under weak second-order sufficient conditions which are weaker than the second-order sufficient conditions in the literature. We further discuss the existence of global saddle points without requiring the uniqueness of the global optimal solution.

MSC:

90C46 Optimality conditions and duality in mathematical programming
90C30 Nonlinear programming
Full Text: DOI

References:

[1] Hestenes MR (1969). Multiplier and gradient methods. J Optim Theory Appl 4: 303–320 · Zbl 0174.20705 · doi:10.1007/BF00927673
[2] Huang XX and Yang XQ (2001). Approximate optimal solutions and nonlinear Lagrangian functions. J Global Optim 21: 51–65 · Zbl 1099.90589 · doi:10.1023/A:1017960629124
[3] Huang XX and Yang XQ (2003). A unified augmented Lagrangian approach to duality and exact penalization. Math Oper Res 28: 524–532 · Zbl 1082.90135 · doi:10.1287/moor.28.3.533.16395
[4] Huang XX and Yang XQ (2005). Further study on augmented Lagrangian duality theory. J Global Optim 31: 193–210 · Zbl 1090.90201 · doi:10.1007/s10898-004-5695-7
[5] Li D (1995). Zero duality gap for a class of nonconvex optimization problems. J Optim Theory Appl 85: 309–323 · Zbl 0829.90109 · doi:10.1007/BF02192229
[6] Li D (1997). Saddle-point generation in nonlinear nonconvex optimization. Nonlinear Anal 30: 4339–4344 · Zbl 0911.90276 · doi:10.1016/S0362-546X(97)00164-8
[7] Li D and Sun XL (2000). Local convexification of the Lagrangian function in nonconvex optimization. J Optim Theory Appl 104: 109–120 · Zbl 0960.90070 · doi:10.1023/A:1004628822745
[8] Li D and Sun XL (2001). Convexification and existence of saddle point in a pth power reformulation for nonconvex constrained optimization. Nonlinear Anal 47: 5611–5622 · Zbl 1042.90643 · doi:10.1016/S0362-546X(01)00663-0
[9] Liu Q, Yang XM and Lee HW (2007). On saddle points of a class of augmented Lagrangian functions. J Ind Manag Optim 3(4): 693–700 · Zbl 1166.90362
[10] Minoux M (1986). Mathematical programming: theory and algorithms. Wiley, New York · Zbl 0602.90090
[11] Powell MJD (1969). A method for nonlinear constraints in minimization problems. In: Fletcher, R (eds) Optimization, pp 283–298. Academic Press, New York,
[12] Rockafellar RT (1974). Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J Control Optim 12: 268–285 · doi:10.1137/0312021
[13] Rockafella RT and Wets RJ (1998). Variational analysis. Springer, Berlin
[14] Rubinov AM, Huang XX and Yang XQ (2002). The zero duality gap property and lower semicontinuity of the perturbation function. Math Oper Res 27: 775–791 · Zbl 1082.90567 · doi:10.1287/moor.27.4.775.295
[15] Sun XL, Li D and Mckinnon K (2005). On saddle points of augmented Lagrangians for constrained nonconvex optimization. SIAM J Optim 15: 1128–1146 · Zbl 1114.90099 · doi:10.1137/030602770
[16] Wang CY, Yang XQ and Yang XM (2003). Nonlinear Lagrange duality theorems and penalty function methods in continuous optimization. J Global Optim 27: 473–484 · Zbl 1061.90107 · doi:10.1023/A:1026028626328
[17] Yang XM, Wu ZY and Lee HWJ (2004). A note on local convexity of the p power Lagrangian function in nonconvex optimization. Indian J Pure Appl Math 35(1): 57–60 · Zbl 1044.90053
[18] Yang XQ, Wang CY, Yang XM (2008) Unified nonlinear Lagrangian approach to duality and optimal paths. J Optim Theory Appl (to appear)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.