×

Hybrid modeling of interfacial region thermophysics and intrinsic stability of thin free liquid films. (English) Zbl 1190.80012

Summary: The film rupture process that dictates merging of adjacent bubbles is particularly important in nucleate boiling heat transfer, bubbly two-phase flow in small tubes, and the mechanisms that dictate the Leidenfrost transition. To understand the mechanisms of bubble merging in nanostructured boiling surfaces and in nanotubes, it is useful to explore film stability and onset of rupture at the molecular level. This paper reports the results of such an investigation using a hybrid analysis scheme that combines a new formulation of capillarity theory for free liquid films with molecular dynamics (MD) simulations that use similar interaction potentials. Two forms of our molecular film capillarity theory are developed here: one for non-polar fluids based on a Lennard-Jones interaction potential, and a second specifically for water using a modified treatment of the SPC/E interaction potential that accounts for water dipole interactions. The hybrid model has the advantage that the capillarity theory provides theoretical relationships among parameters that govern film structure and thermophysical behavior, while the companion MD simulations allow more detailed molecular level exploration of the film thermophysics. Results obtained with the hybrid model indicate that wave instability predominates as an onset of rupture mechanism for liquid films of macroscopic extent, but for free liquid films with nanoscale lateral extent (in, for example, nanostructured boiling surfaces), lack of core stability is more likely to be the mechanism. The implications of these predictions for film rupture and bubble merging in nanostructured surfaces and nanotubes are examined in detail.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76T10 Liquid-gas two-phase flows, bubbly flows
82D80 Statistical mechanics of nanostructures and nanoparticles
82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)
76A20 Thin fluid films
Full Text: DOI

References:

[1] Squire, H. B.: Investigation of the instability of a moving liquid film, Br. J. Appl. phys. 4, 167-169 (1953)
[2] Hagerty, W. W.; Shea, J. F.: A study of the stability of plane fluids sheets, Trans. ASME, J. Appl. mech. 22, 509-514 (1955)
[3] Scheludko, A.: Proc. koninkl. Ned. akad. Wet. ser. B, Proc. koninkl. Ned. akad. Wet. ser. B 65, No. 1, 87-96 (1962)
[4] Vrij, A.: Possible mechanism for the spontaneous rupture of thin, free liquid films, Discuss. Faraday soc. 42, 23-33 (1966)
[5] Vrij, A.; Overbeek, J. Th.G.: Rupture of thin liquid films due to spontaneous fluctuations in thickness, J. amer. Chem. soc. 90, 3074-3078 (1968)
[6] Donners, W. A. B.; Vrij, A.: The critical thickness of thin free liquid films, Colloid polym. Sci. 256, 804-813 (1978)
[7] Miller, C. A.: Interfacial phenomena, (1985)
[8] Radoev, B.; Scheludko, A.; Manev, E.: Critical thickness of thin liquid films: theory and experiment, J. colloid interface sci. 95, 254-265 (1983)
[9] Manev, E.; Tsekov, R.; Radoev, B.: Effects of thickness non-homogeneity on the kinetic behavior of microscopic foam film, J. dispers. Sci. technol. 18, 769-788 (1997)
[10] Dong, T.; Yang, Z.; Wu, H.: Molecular simulations of r141b boiling flow in micro/nano channel: interfacial phenomena, Energy conversion manag. 47, 2178-2191 (2006)
[11] Li, C.; Wang, Z.; Wang, P. -I.; Peles, Y.; Koratkar, N.; Peterson, G. P.: Nanostructured copper interfaces for enhanced boiling, Small, 1084-1088 (2008)
[12] De Vries, A. J.: Foam stability, part IV. Kinetic and activation energy of film rupture, Recueil des travaux chimiques des pays-bas 77, 383-399 (1958)
[13] Holcomb, C. D.; Clancy, P.; Zollweg, J. A.: A critical study of the simulation of the liquid – vapor interface of a lennard-Jones fluid, Mol. phys. 78, 437-459 (1993)
[14] Godawat, R.; Jamadagni, S. N.; Errington, J. R.; Garde, S.: Structure, stability, and rupture of free and supported liquid films and assemblies in molecular simulations, Ind. eng. Chem. res. 47, 3582-3590 (2008)
[15] Chen, M.; Guo, Z. -Y.; Liang, X. -G.: Molecular simulation of some thermophysical properties and phenomena, Microscale thermophys. Eng. 5, 1-16 (2001)
[16] A.P. Wemhoff, V.P. Carey, Molecular dynamics exploration of properties in the liquid – vapor interfacial region, Paper HT2003-47158, in: Proceedings of the ASME Summer Heat Transfer Conference, Las Vegas, NV, 2003.
[17] A.P. Wemhoff, V.P. Carey, Surface tension evaluation via thermodynamic analysis of statistical data from molecular dynamic simulations, Paper HT-FED04-56690, in: Proceedings of the 2004 ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, NC, 2004.
[18] Weng, J. G.; Park, S.; Lukes, J. R.; Tien, C. L.: Molecular dynamics investigation of thickness effect on liquid films, J. chem. Phys. 113, 5917-5923 (2000)
[19] Alejandre, J.; Tildesley, D. J.; Chapela, G. A.: Molecular dynamics simulation of the orthobaric densities and surface tension of water, J. chem. Phys. 102, 4574-4583 (1995)
[20] Dang, L. X.; Chang, T. -M.: Molecular dynamics study of water clusters, liquid, and liquid – vapor interface of water with many-body potentials, J. chem. Phys. 106, 8149-8159 (1997)
[21] Matusmoto, M.; Takaoka, Y.; Kataoka, Y.: Liquid – vapor interface of water – methanol mixture. I. computer simulation, J. chem. Phys. 98, 1464-1472 (1993)
[22] Daiguji, H.: Molecular dynamics study of n-alcohols adsorbed on an aqueous electrolyte solution, J. chem. Phys. 115, 1538-1549 (2001)
[23] Tarek, M.; Tobias, D. J.; Klein, M. L.: Molecular dynamics of an ethanol – water solution, Physica A 231, 117-122 (1996)
[24] Alejandre, J.; Tildesley, D. J.; Chapela, G. A.: Fluid phase equilibria using molecular dynamics: the surface tension of chlorine and hexane, Mol. phys. 85, 651-663 (1995)
[25] Hariharan, A.; Harris, J. G.: Structure and thermodynamics of the liquid – vapor interface of fluorocarbons and semifluorinated alkane diblocks: a molecular dynamics study, J. chem. Phys. 101, 4156-4165 (1994)
[26] Carey, V. P.: Thermodynamic properties and structure of the liquid – vapor interface: a neoclassical redlich – Kwong model, J. chem. Phys. 118, 5053-5064 (2003)
[27] Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P.: The missing term in effective pair potentials, J. chem. Phys. 91, 6269-6271 (1987)
[28] Landau, L. D.; Lifshitz, E. M.: The classical theory of fields, (1994) · Zbl 0178.28704
[29] Sokolnikoff, I. S.; Redheffer, R. M.: Mathematics of physics and modern engineering, (1966) · Zbl 0171.01401
[30] NIST webbook: <http://webbook.nist.gov/chemistry/>, 2009.
[31] Tolman, R. C.: Effect of droplet size on surface tension, J. chem. Phys. 17, 333-343 (1949)
[32] Haye, M. J.; Bruin, C.: Molecular dynamics study of the curvature correction to the surface tension, J. chem. Phys. 100, 556-559 (1989)
[33] Pruppacher, H. R.; Klett, J. D.: Microphysics of clouds and precipitation, (1980)
[34] Wemhoff, A. P.; Carey, V. P.: Molecular dynamics exploration of thin liquid films on solid surfaces. 1. Monatomic fluid films, Microscale thermophys. Eng. 9, 331-349 (2005)
[35] Wemhoff, A. P.; Carey, V. P.: Molecular dynamics exploration of thin liquid films on solid surfaces. 2. Polyatomic nonpolar fluids and water films, Microscale thermophys. Eng. 9, 351-363 (2005)
[36] Y. Gan, V.P. Carey, Stability of thin free liquid films and the onset conditions for film rupture – an MD simulation study, in: Proc. of 2007 ASME-JSME Thermal Engineering and Summer Heat Transfer Conference, HT2007-32003, 2007.
[37] Box, G. E. P.; Muller, M. E.: A note on the generation of random normal deviates, Ann. math. Stat. 29, 610-611 (1958) · Zbl 0085.13720 · doi:10.1214/aoms/1177706645
[38] Israelachvili, J.: Intermolecular and surface forces, (1992)
[39] Reference database, J. Phys. Chem, 24 (1995) 1.
[40] Landolt-Bornstein: Numerical data and functional relationships in science and technology, (1982)
[41] Reference database, J. Phys. Chem 19 (1990) 3.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.