×

Vanishing shear viscosity limit in the magnetohydrodynamic equations. (English) Zbl 1190.76172

Summary: We study an initial boundary value problem for the equations of plane magnetohydrodynamic compressible flows, and prove that as the shear viscosity goes to zero, global weak solutions converge to a solution of the original equations with zero shear viscosity. As a by-product, this paper improves the related results obtained by Frid and Shelukhin for the case when the magnetic effect is neglected.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Cabannes H. (1970). Theoretical Magnetofluiddynamics. Academic Press, New York-London
[2] Chen G.Q. and Wang D. (2003). Existence and continuous dependence of large solutions for the magnetohydrodynamics equations. Z. angew. Math. Phys. 54: 608–632 · Zbl 1036.35126 · doi:10.1007/s00033-003-1017-z
[3] Chen G.Q. and Wang D. (2002). Global solutions of nonlinear magnetohydrodynamics with large initial data. J. Diff. Eqs. 182: 344–376 · Zbl 1001.76118 · doi:10.1006/jdeq.2001.4111
[4] Fan, J., Jiang, S.: Zero shear viscosity limit for the Navier–Stokes equations of compressible isentropic fluids with cylindric symmetry. Rend. Sem. Mat. Univ. Pol. Torino (in press) · Zbl 1178.76307
[5] Fan, J., Jiang, S., Nakamura, G.: Stability of weak solutions to equations of magnetohydrodynamics with Lebesgue initial data. Preprint, 2005 · Zbl 1230.35020
[6] Fan, J.: Stability of spherically symmetric weak solutions to the Navier–Stokes equations of compressible heat conductive fluids in bounded annular domains. Submitted, 2005
[7] Feireisl E. (2001). On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carlolinae 42: 83–98 · Zbl 1115.35096
[8] Feireisl E. (2004). Dynamics of Viscous Compressible Fluids. Oxford Univ. Press, Oxford · Zbl 1080.76001
[9] Frid H. and Shelukhin V.V. (1999). Boundary layers for the Navier–Stokes equations of compressible fluids. Comm. Math. Phys. 208: 309–330 · Zbl 0946.35060 · doi:10.1007/s002200050760
[10] Frid H. and Shelukhin V.V. (2000). Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry. SIAM J. Math. Anal. 31: 1144–1156 · Zbl 0956.35102 · doi:10.1137/S003614109834394X
[11] Gajewski H., Gröger K. and Zacharias K. (1974). Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademil Verlag, Berlin · Zbl 0289.47029
[12] Hoff D. (1995). Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Diff. Eqns. 120: 215–254 · Zbl 0836.35120 · doi:10.1006/jdeq.1995.1111
[13] Hoff D. and Tsyganov E. (2005). Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics. Z. angew. Math. Phys. 56: 791–804 · Zbl 1077.35071 · doi:10.1007/s00033-005-4057-8
[14] Jiang S. and Zhang P. (2001). On spherically symmetric solutions of the compressible isentropic Navier–Stokes equations. Commun. Math. Phys. 215: 559–581 · Zbl 0980.35126 · doi:10.1007/PL00005543
[15] Jiang S. and Zlotnik A. (2004). Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data. Proc. Royal Soc. Edinburgh 134A: 939–960 · Zbl 1072.35082 · doi:10.1017/S0308210500003565
[16] Kazhikhov A.V. and Smagulov Sh.S. (1986). Well-posedness and approximation methods for a model of magnetogasdynamics. Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat. 5: 17–19
[17] Kawashima S. and Okada M. (1982). Smooth global solutions for the one-dimensional equations in magnetohydrodynamics. Proc Japan Acad. Ser. A, Math. Sci. 58: 384–387 · Zbl 0522.76098 · doi:10.3792/pjaa.58.384
[18] Landau L.D., Lifshitz E.M. and Pitaevskii L.P. (1999). Electrodynamics of Continuous Media, 2nd ed. Butterworth-Heinemann, London
[19] Li, T.-T., Qin, T.: Physics and Partial Differential Equations, 2nd. Volume 1, Beijing: Higher Education Press, 2005 (in Chinese)
[20] Lions P.-L. (1996). Mathematical Topics in Fluid Dynamics. Volume 1, Incompressible Models. Oxford Science Publication, Oxford
[21] Lions P.-L. (1998). Mathematical Topics in Fluid Dynamics. Volume 2, Compressible Models. Oxford Science Publication, Oxford
[22] Liu, T.-P., Zeng, Y.: Long-time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws. Mem. Amer. Math. Soc. 599, Providence, RI: Amer. Math. Soc. 1997 · Zbl 0884.35073
[23] Moreau R. (1990). Magnetohydrodynamics. Klumer Academic Publishers, Dordrecht · Zbl 0714.76003
[24] Polovin R.V. and Demutskii V.P. (1990). Fundamentals of Magnetohydrodynamics. Consultants. Bureau, New York
[25] Rakotoson J.M. (1992). A compactness lemma for quasilinear problem: application to parabolic equations. J. Funct. Anal. 106: 358–374 · Zbl 0801.35063 · doi:10.1016/0022-1236(92)90053-L
[26] Serre D. (1986). Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C. R. Acad. Sci. Paris. 303: 639–642 · Zbl 0597.76067
[27] Shelukhin V.V. (1998). The limit of zero shear viscosity for compressible fluids. Arch. Rat. Mech. Appl. 143: 357–374 · Zbl 0922.35127 · doi:10.1007/s002050050109
[28] Shelukhin V.V. (1998). A shear flow problem for the compressible Navier-Stokes equations. Int. J. Non-linear Mech. 33: 247–257 · Zbl 0894.76071 · doi:10.1016/S0020-7462(97)00010-3
[29] Shelukhin V.V. (2000). Vanishing shear viscosity in a free-boundary problem for the equations of compressible fluids. J. Diff. Eqs. 167: 73–86 · Zbl 0971.35062 · doi:10.1006/jdeq.2000.3773
[30] Simon J. (1987). Compact sets and the space L p (0, T; B). Ann. Mat. Pura Appl. 146: 65–96 · Zbl 0629.46031 · doi:10.1007/BF01762360
[31] Smagulov Sh.S., Durmagambetov A.A. and Iskenderova D.A. (1993). The Cauchy problem for the equations of magnetogasdynamics. Diff. Eqs. 29: 278–288 · Zbl 0822.76100
[32] Ströhmer G. (1990). About compressible viscous fluid flow in a bounded region. Pacific J. Math. 143: 359–375 · Zbl 0669.76089
[33] Vol’pert A.I. and Hudjaev S.I. (1972). On the Cauchy problem for composite systems of nonlinear differential equations. Math. USSR-Sb. 16: 517–544 · Zbl 0251.35064 · doi:10.1070/SM1972v016n04ABEH001438
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.