×

Kinetic theory of point vortices in two dimensions: analytical results and numerical simulations. (English) Zbl 1189.82096

Summary: We develop the kinetic theory of point vortices in two-dimensional hydrodynamics and illustrate the main results of the theory with numerical simulations. We first consider the evolution of the system “as a whole” and show that the evolution of the vorticity profile is due to resonances between different orbits of the point vortices. The evolution stops when the profile of angular velocity becomes monotonic even if the system has not reached the statistical equilibrium state (Boltzmann distribution). In that case, the system remains blocked in a quasi stationary state with a non standard distribution. We also study the relaxation of a test vortex in a steady bath of field vortices. The relaxation of the test vortex is described by a Fokker-Planck equation involving a diffusion term and a drift term. The diffusion coefficient, which is proportional to the density of field vortices and inversely proportional to the shear, usually decreases rapidly with the distance. The drift is proportional to the gradient of the density profile of the field vortices and is connected to the diffusion coefficient by a generalized Einstein relation. We study the evolution of the tail of the distribution function of the test vortex and show that it has a front structure. We also study how the temporal auto-correlation function of the position of the test vortex decreases with time and find that it usually exhibits an algebraic behavior with an exponent that we compute analytically. We mention analogies with other systems with long-range interactions.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
76B47 Vortex flows for incompressible inviscid fluids
76F55 Statistical turbulence modeling
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)

References:

[1] Dynamics and Thermodynamics of Systems with Long Range Interactions, edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Lect. Not. in Phys. Vol. 602 (Springer, 2002)
[2] P.H. Chavanis, Statistical mechanics of two-dimensional vortices and stellar systems in dauxois; See also [cond-mat/0212223]
[3] P.H. Chavanis, Physica A 361, 81 (2006) · doi:10.1016/j.physa.2005.06.088
[4] L. Boltzmann, Wien, Ber. 66, 275 (1872)
[5] L.D. Landau, Phys. Z. Sowj. Union 10, 154 (1936)
[6] S. Chandrasekhar, Principles of Stellar Dynamics (University of Chicago press, 1942) · JFM 68.0655.03
[7] H. Kandrup, Phys. Rep. 63, 1 (1980) · doi:10.1016/0370-1573(80)90015-0
[8] A. Lenard, Ann. Phys. (N.Y.) 10, 390 (1960) · Zbl 0131.45503 · doi:10.1016/0003-4916(60)90003-8
[9] R. Balescu, Phys. Fluids 3, 52 (1960) · Zbl 0095.43907 · doi:10.1063/1.1706002
[10] F. Bouchet, Phys. Rev. E 70, 036113 (2004) · doi:10.1103/PhysRevE.70.036113
[11] F. Bouchet, T. Dauxois, Phys. Rev. E 72, 5103 (2005) · doi:10.1103/PhysRevE.72.045103
[12] P.H. Chavanis, J. Vatteville, F. Bouchet, Eur. Phys. J. B 46, 61 (2005) · doi:10.1140/epjb/e2005-00234-0
[13] P.H. Chavanis, Eur. Phys. J. B 52, 47 (2006) · doi:10.1140/epjb/e2006-00267-9
[14] P.H. Chavanis, M. Lemou, Phys. Rev. E 72, 061106 (2005) · doi:10.1103/PhysRevE.72.061106
[15] P.H. Chavanis, Eur. Phys. J. B 52, 61 (2006) · doi:10.1140/epjb/e2006-00268-8
[16] C. Benedetti, S. Rambaldi, G. Turchetti, Physica A 364, 197 (2006) · doi:10.1016/j.physa.2005.08.054
[17] P. Valageas, Phys. Rev. E 74, 016606 (2006) · doi:10.1103/PhysRevE.74.016606
[18] P.H. Chavanis, Physica A, 377, 469 (2007)
[19] S. Ichimaru Basic Principles of Plasma Physics (W.A. Benjamin, Reading, MA, 1973)
[20] J. Binney, S. Tremaine, Galactic Dynamics (Princeton Series in Astrophysics, 1987)
[21] S. Nazarenko, V.E. Zakharov, Physica D 56, 381 (1992) · Zbl 0755.35095 · doi:10.1016/0167-2789(92)90177-O
[22] P.H. Chavanis, Phys. Rev. E 58, R1199 (1998)
[23] P.H. Chavanis, Phys. Rev. E 64, 026309 (2001) · doi:10.1103/PhysRevE.64.026309
[24] P.H. Chavanis, Phys. Rev. E 65, 056302 (2002) · doi:10.1103/PhysRevE.65.056302
[25] P.H. Chavanis, C. Sire Phys. Rev. E 62, 490 (2000) · doi:10.1103/PhysRevE.62.490
[26] P.H. Chavanis, C. Sire Phys. Fluids 13, 1904 (2001) · Zbl 1184.76095 · doi:10.1063/1.1374937
[27] S. Chandrasekhar, Rev. Mod. Phys. 21, 383 (1949) · Zbl 0036.43003 · doi:10.1103/RevModPhys.21.383
[28] H. Kandrup, Astro. Space. Sci. 97, 435 (1983) · Zbl 0541.70016 · doi:10.1007/BF00653499
[29] C.R. Willis, R.H. Picard, Phys. Rev. A 9, 1343 (1974) · doi:10.1103/PhysRevA.9.1343
[30] H. Kandrup, ApJ 244, 316 (1981) · doi:10.1086/158709
[31] D. Dubin, T.M. O’Neil, Phys. Rev. Lett. 60, 1286 (1988) · doi:10.1103/PhysRevLett.60.1286
[32] D.A. Schecter, D. Dubin, Phys. Rev. E 13, 1704 (2001)
[33] D. Dubin, D.Z. Jin, Physics Lett. A 284, 112 (2001) · Zbl 0974.82029 · doi:10.1016/S0375-9601(01)00296-1
[34] D. Dubin, Phys. Plasmas 10, 1338 (2003) · doi:10.1063/1.1564596
[35] E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, 1981)
[36] L. Onsager, Nuovo Cimento, Suppl. 6, 279 (1949)
[37] G. Joyce, D. Montgomery, J. Plasma Phys. 10, 107 (1973) · doi:10.1017/S0022377800007686
[38] T.S. Lundgren, Y.B. Pointin, J. Stat. Phys. 17, 323 (1977) · doi:10.1007/BF01014402
[39] E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, Commun. Math. Phys. 143, 501 (1992) · Zbl 0745.76001 · doi:10.1007/BF02099262
[40] G. Eyink, H. Spohn, J. Stat. Phys. 70, 833 (1993) · Zbl 0945.82568 · doi:10.1007/BF01053597
[41] M.K.H. Kiessling, J. Lebowitz, Lett. Math. Phys. 42, 43 (1997) · Zbl 0902.76021 · doi:10.1023/A:1007370621385
[42] P.K. Newton, The N-Vortex Problem: Analytical Techniques, Applied Mathematical Sciences Vol. 145 (Springer-Verlag, Berlin, 2001)
[43] G. Kirchhoff, in Lectures in Mathematical Physics, Mechanics (Teubner, Leipzig, 1877)
[44] J. Fröhlich, D. Ruelle, Commun. Math. Phys. 87, 1 (1982) · Zbl 0505.76037 · doi:10.1007/BF01211054
[45] D. Ruelle, J. Stat. Phys. 61, 865 (1990) · doi:10.1007/BF01027304
[46] P.H. Chavanis, [arXiv:0704.3953]
[47] D. Lynden-Bell, MNRAS 136, 101 (1967)
[48] J. Miller, Phys. Rev. Lett. 65, 2137 (1990) · Zbl 1050.82553 · doi:10.1103/PhysRevLett.65.2137
[49] R. Robert, J. Sommeria, J. Fluid Mech. 229, 291 (1991) · Zbl 0850.76025 · doi:10.1017/S0022112091003038
[50] P.H. Chavanis, J. Sommeria, R. Robert, ApJ 471, 385 (1996) · doi:10.1086/177977
[51] C.F. Driscoll, J.H. Malmberg, K.S. Fine, Phys. Rev. Lett. 60, 1290 (1988) · doi:10.1103/PhysRevLett.60.1290
[52] P.H. Chavanis, Int. J. Mod. Phys. B 20, 3113 (2006) · Zbl 1121.82304 · doi:10.1142/S0217979206035400
[53] Y.Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, Physica A 337, 36 (2004) · doi:10.1016/j.physa.2004.01.041
[54] R.C. Davidson, Phys. Fluids 28, 1937 (1985) · Zbl 0619.76064 · doi:10.1063/1.864938
[55] C.F. Driscoll, Phys. Rev. Lett. 64, 645 (1990) · doi:10.1103/PhysRevLett.64.645
[56] H. Brands, P.H. Chavanis, R. Pasmanter, J. Sommeria, Phys. Fluids 11, 3465 (1999); Erratum: Phys. Fluids 12, 241 (2000) · Zbl 1149.76325 · doi:10.1063/1.870204
[57] R. Kawahara, H. Nakanishi, J. Phys. Soc. Jpn 75, 054001 (2006) · doi:10.1143/JPSJ.75.054001
[58] I.F. Potapenko, A.V. Bobylev, C.A. de Azevedo, A.S. de Assis, Phys. Rev. E 56, 7159 (1997) · doi:10.1103/PhysRevE.56.7159
[59] S. Marksteiner, K. Ellinger, P. Zoller, Phys. Rev. A 53, 3409 (1996) · doi:10.1103/PhysRevA.53.3409
[60] J. Farago, Europhys. Lett. 52, 379 (2000) · doi:10.1209/epl/i2000-00449-1
[61] F. Lillo, S. Miccichè, R.N. Mantegna, [cond-mat/0203442]
[62] E. Lutz, Phys. Rev. Lett. 93, 1906021 (2004)
[63] P.H. Chavanis, Phys. Rev. E 68, 036108 (2003) · doi:10.1103/PhysRevE.68.036108
[64] P.H. Chavanis, C. Sire, Phys. Rev. E 69, 016116 (2004) · doi:10.1103/PhysRevE.69.016116
[65] C. Tsallis, J. Stat. Phys. 52, 479 (1988) · Zbl 1082.82501 · doi:10.1007/BF01016429
[66] P.H. Chavanis, C. Sire, Physica A 356, 419 (2005) · doi:10.1016/j.physa.2005.03.046
[67] P.H. Chavanis, Physica A 365, 102 (2006) · doi:10.1016/j.physa.2006.01.006
[68] P.H. Chavanis, A&A 451, 109 (2006) · Zbl 1096.85012 · doi:10.1051/0004-6361:20054008
[69] P.H. Chavanis, Eur. Phys. J. B 53, 487 (2006) · doi:10.1140/epjb/e2006-00405-5
[70] P.H. Chavanis, J. Sommeria, J. Fluid Mech. 356, 259 (1998) · Zbl 0912.76011 · doi:10.1017/S0022112097007933
[71] B. Boghosian, Phys. Rev. E 53, 4754 (1996) · doi:10.1103/PhysRevE.53.4754
[72] P.H. Chavanis, J. Sommeria, J. Fluid Mech. 314, 267 (1996) · Zbl 0864.76037 · doi:10.1017/S0022112096000316
[73] R. Robert, J. Sommeria, Phys. Rev. Lett. 69, 2776 (1992) · Zbl 0968.82527 · doi:10.1103/PhysRevLett.69.2776
[74] R. Robert, C. Rosier, J. Stat. Phys. 86, 481 (1997) · Zbl 0952.76511 · doi:10.1007/BF02199111
[75] P.H. Chavanis, J. Sommeria, Phys. Rev. Lett. 78, 3302 (1997) · doi:10.1103/PhysRevLett.78.3302
[76] P.H. Chavanis, Phys. Rev. Lett. 84, 5512 (2000) · doi:10.1103/PhysRevLett.84.5512
[77] B.B. Kadomtsev, O.P. Pogutse, Phys. Rev. Lett. 25, 1155 (1970) · doi:10.1103/PhysRevLett.25.1155
[78] G. Severne, M. Luwel, Astr. Space Sci. 72, 293 (1980) · Zbl 0445.76055 · doi:10.1007/BF00639139
[79] R. Kawahara, H. Nakanishi, J. Phys. Soc. Jpn 76, 074001 (2007) · doi:10.1143/JPSJ.76.074001
[80] C. Sire, P.H. Chavanis, Phys. Rev. E 61, 6644 (2000) · doi:10.1103/PhysRevE.61.6644
[81] P.K. Newton, I. Mezic, Journal of Turbulence 3, 52 (2002)
[82] S. Tremaine, M. Hénon, D. Lynden-Bell, MNRAS 219, 285 (1986)
[83] P.H. Chavanis, Physica A 359, 177 (2006) · doi:10.1016/j.physa.2005.06.043
[84] R.S. Ellis, K. Haven, B. Turkington, Nonlinearity 15, 239 (2002) · Zbl 1068.76041 · doi:10.1088/0951-7715/15/2/302
[85] P.H. Chavanis, Physica D 200, 257 (2005) · Zbl 1290.76036 · doi:10.1016/j.physd.2004.11.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.