×

Multiple solutions to a nonlinear Schrödinger equation with Aharonov-Bohm magnetic potential. (English) Zbl 1189.35302

Summary: We consider the magnetic nonlinear Schrödinger equations \[ \begin{aligned} \left(-i\nabla + sA\right)^{2} u + u &= |u|^{p-2} u, \quad p \in (2, 6), \\ \left(-i\nabla + sA\right)^{2}u &= |u|^{4}u,\end{aligned} \] in \(\Omega=\mathcal{O}\times \mathbb{R}\), where \(\mathcal{O}\) is an open subset of \({\mathbb{R}^{2}\setminus\{0\}, s\in\mathbb{R}}\), and \(A:\Omega\rightarrow\mathbb{R}^3\) is the Aharonov-Bohm magnetic potential \[ A(x_{1},x_{2},x_{3}):=\frac{1}{x_{1}^{2}+x_{2}^{2}}(-x_{2},x_{1},0). \] We prove multiplicity results and describe the symmetry properties of the solutions obtained.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J60 Nonlinear elliptic equations
35B06 Symmetries, invariants, etc. in context of PDEs
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
Full Text: DOI

References:

[1] Abatangelo, L., Terracini, S.: Solutions to a nonlinear Schrödinger equation with singular electro-magnetic potentials (in preparation) · Zbl 1273.35247
[2] Arioli G., Szulkin A.: A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170, 277-295 (2003) · Zbl 1051.35082 · doi:10.1007/s00205-003-0274-5
[3] Bartsch T., Dancer E.N., Peng S.: On multi-bump semi-classical bound states of nonlinear Schrödinger equations with electromagnetic fields. Adv. Differ. Equ. 11, 781-812 (2006) · Zbl 1146.35081
[4] Brezis H., Lieb E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486-490 (1983) · Zbl 0526.46037 · doi:10.2307/2044999
[5] Chabrowski J., Szulkin A.: On the Schrödinger equation involving a critical Sobolev exponent and magnetic field. Topol. Methods Nonlinear Anal. 25, 3-21 (2005) · Zbl 1176.35022
[6] Cingolani S.: Semiclassical stationary states of nonlinear Schrödinger equations with an external magnetic field. J. Differ. Equ. 188, 52-79 (2003) · Zbl 1062.81056 · doi:10.1016/S0022-0396(02)00058-X
[7] Cingolani S., Clapp M.: Intertwining semiclassical bound states to a nonlinear magnetic Schrödinger equation. Nonlinearity 22, 2309-2331 (2009) · Zbl 1173.35678 · doi:10.1088/0951-7715/22/9/013
[8] Cingolani S., Jeanjean L., Secchi S.: Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions. ESAIM Control Optim. Calc. Var. 15, 653-675 (2009) · Zbl 1221.35393 · doi:10.1051/cocv:2008055
[9] Cingolani S., Secchi S.: Semiclassical limit for nonlinear Schrödinger equations with electromagnetic fields. J. Math. Anal. Appl. 275, 108-130 (2002) · Zbl 1014.35087 · doi:10.1016/S0022-247X(02)00278-0
[10] Clapp M., Iturriaga R., Szulkin A.: Periodic and Bloch solutions to a magnetic nonlinear Schrödinger equation. Adv. Nonlinear Stud. 9, 639-655 (2009) · Zbl 1182.35203
[11] Clapp, M., Szulkin, A.: A positive solution to the pure critical exponent problem in unbounded domains (preprint) · Zbl 1319.35047
[12] Esteban, M. J.; Lions, P. L.; Colombini, F. (ed.); Marino, A. (ed.); Modica, L. (ed.); Spagnolo, S. (ed.), Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, 401-449 (1989), Basel · Zbl 0702.35067
[13] Evans L.C., Gariepy R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[14] Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \[{\mathbb{R}^N}. In\]: Mathematical Analysis and Applications, Part A, pp. 369-402, Adv. in Math. Suppl. Stud. 7a. Academic Press, New York (1981) · Zbl 0469.35052
[15] Kurata K.: A unique continuation theorem for the Schrödinger equation with singular magnetic field. Proc. Am. Math. Soc. 125, 853-860 (1997) · Zbl 0887.35026 · doi:10.1090/S0002-9939-97-03672-1
[16] Kurata K.: Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal. 41, 763-778 (2000) · Zbl 0993.35081 · doi:10.1016/S0362-546X(98)00308-3
[17] Laptev, A., Weidl, T.: Hardy inequalities for magnetic Dirichlet forms. In: Mathematical Results in Quantum Mechanics (Prague, 1998), pp. 299-305. Oper. Theory Adv. Appl. 108. Birkhäuser, Basel (1999) · Zbl 0977.26005
[18] Lieb E.H., Loss M.: Analysis. Graduate Studies in Math., vol. 14. American Mathematical Society, Providence (1997) · Zbl 0905.11023
[19] Lions, P.L.: The concentration-compacteness principle in the calculus of variations. The locally compact case, Ann. Inst. Henri Poincaré, Analyse Non Linéaire 1, 109-145 and 223-283 (1984) · Zbl 0541.49009
[20] Maz’ja V.G.: Sobolev Spaces. Springer, Berlin (1985) · Zbl 0692.46023
[21] Palais R.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19-30 (1979) · Zbl 0417.58007 · doi:10.1007/BF01941322
[22] Pankov A.A.: On nontrivial solutions of the nonlinear Schrödinger equation with a magnetic field. Funct. Anal. Appl. 37, 75-77 (2003) · Zbl 1028.35142 · doi:10.1023/A:1022984313164
[23] Peshkin M., Tonomura A.: The Aharonov-Bohm Effect. Lecture Notes in Physics, vol. 340. Springer, Berlin (1989)
[24] Ramos, M., Wang, Z.-Q., Willem, M.: Positive solutions for elliptic equations with critical growth in unbounded domains. In: Calculus of variations and differential equations (Haifa, 1998), pp. 192-199, Chapman & Hall/CRC Res. Notes Math. 410, Chapman & Hall/CRC, Boca Raton (2000) · Zbl 0968.35050
[25] Waliullah, S.: Minimizers and symmetric minimizers for problems with critical Sobolev exponent. Topol. Methods Nonlinear Anal. (to appear) · Zbl 1200.35128
[26] Willem M.: Minimax Theorems. PNLDE, vol. 24. Birkhäuser, Basel (1996) · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.