×

Existence of weak solutions of two-point boundary value problems for second-order dynamic equations on time scales. (English) Zbl 1189.34170

By using critical point theory, the authors investigate the existence of weak solutions of two-point boundary value problems for second-order dynamic equations on an arbitrary time scale \(\mathbb{T}\), which covers the case of differential dynamic systems \((\mathbb{T}=\mathbb{R})\) as well as the case of discrete dynamic systems \((\mathbb{T}=\mathbb{Z})\).

MSC:

34N05 Dynamic equations on time scales or measure chains
34B15 Nonlinear boundary value problems for ordinary differential equations
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Full Text: DOI

References:

[1] Agarwal, R. P.; Bohner, M.; O’Regan, D.; Peterson, A., Dynamic equations on time scales: A survey, J. Comput. Appl. Math., 141, 1-26 (2002) · Zbl 1020.39008
[2] Agarwal, R. P.; Bohner, M.; Peterson, A., Inequalities on time scales: A survey, Math. Inequal. Appl., 4, 535-557 (2001) · Zbl 1021.34005
[3] Agarwal, R. P.; Bohner, M.; Řehák, P., (Half-Linear Dynamic Equations. Half-Linear Dynamic Equations, Nonlinear Analysis and Applications, vol. 1 (2003), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 1-57, to V. Lakshmikantham on his 80th Birthday · Zbl 1056.34049
[4] Agarwal, R. P.; Bohner, M.; Wong, P. J.Y., Sturm-Liouville eigenvalue problems on time scales, Appl. Math. Comput., 99, 153-166 (1999) · Zbl 0938.34015
[5] Agarwal, R. P.; Perera, K.; O’Regan, D., Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal., 58, 69-73 (2004) · Zbl 1070.39005
[6] Anderson, D. R.; Avery, R. I., An even-order three-point boundary value problem on time scales, J. Math. Anal. Appl., 291, 514-525 (2004) · Zbl 1056.34013
[7] Atici, F. M.; Biles, D. C., First order dynamic inclusions on time scales, J. Math. Anal. Appl., 292, 222-237 (2004) · Zbl 1064.34009
[8] Atici, F. M.; Guseinov, G. S., On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141, 75-99 (2002) · Zbl 1007.34025
[9] Bohner, M.; Doslý, O.; Kratz, W., Positive semidefiniteness of discrete quadratic functionals, Proc. Edinb. Math. Soc. (2), 46, 627-636 (2003) · Zbl 1040.39010
[10] Bohner, M.; Hilscher, R., An eigenvalue problem for linear Hamiltonian dynamic systems, Fasc. Math., 35, 35-49 (2005) · Zbl 1096.39017
[11] Bohner, M.; Lutz, D. A., Asymptotic behavior of dynamic equations on time scales, J. Difference Equ. Appl., 7, 21-50 (2001) · Zbl 0972.39004
[12] Bohner, M.; Peterson, A., Dynamic equations on time scales, (An Introduction with Applications (2001), Birkhäuser: Birkhäuser Boston) · Zbl 1021.34005
[13] Bohner, M.; Peterson, A., Advances in Dynamic Equations on Time Scales (2003), Birkhäuser: Birkhäuser Boston · Zbl 1025.34001
[14] Cabada, A., Extremal solutions and Green’s functions of higher order periodic boundary value problems in time scales, J. Math. Anal. Appl., 290, 35-54 (2004) · Zbl 1056.39018
[15] Davidson, F. A.; Rynne, B. P., Global bifurcation on time scales, J. Math. Anal. Appl., 267, 345-360 (2002) · Zbl 0998.34024
[16] Doslý, O.; Hilger, S., A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales, J. Comput. Appl. Math., 141, 147-158 (2002) · Zbl 1009.34033
[17] Guo, D. J., Nonlinear Functional Analysis (2001), Shandong Sci. and Tec. Press: Shandong Sci. and Tec. Press Jinan, (in Chinese)
[18] Guo, Z. M.; Yu, J. S., Existence of periodic solutions and subharmonic solutions on second order superlinear difference equations, Sci. China Ser. A, 33, 226-235 (2003)
[19] Guo, Z. M.; Yu, J. S., The existence of periodic and subharmonic solutions to subquadratic second-order difference equations, J. London Math. Soc., 68, 2, 419-430 (2003) · Zbl 1046.39005
[20] He, Z., Existence of two solutions of \(m\)-point boundary value problem for second order dynamic equations on time scales, J. Math. Anal. Appl., 296, 97-109 (2004) · Zbl 1149.34310
[21] Hilger, S., Analysis on measure chains — A unified approach to continuous and discrete calculus, Results Math., 18, 18-56 (1990) · Zbl 0722.39001
[22] Hilger, S., Differential and difference calculus — unified!, Nonlinear Anal., 30, 2683-2694 (1997) · Zbl 0927.39002
[23] Hilscher, R., Reid roundabout theorem for symplectic dynamic systems on time scales, Appl. Math. Optim., 43, 129-146 (2001) · Zbl 0990.39017
[24] Lakshmikantham, V.; Sivasundaram, S., Stability of moving invariant sets and uncertain dynamic systems on time scales, Comput. Math. Appl., 36, 339-346 (1998) · Zbl 0933.93058
[25] Lu, W. D., Variational Methods in Differential Equations (2003), Science Press: Science Press Beijing, (in Chinese)
[26] Mawhin, J.; Willem, M., Critical Points Theory and Hamiltonian Systems (1989), Springer-Verlag: Springer-Verlag Boston · Zbl 0676.58017
[27] Rabinowitz, P. H., (Minimax Methods in Critical Point Theory with Applications to Differential Equations. Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65 (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.) · Zbl 0609.58002
[28] Saker, S., Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput., 148, 81-91 (2004) · Zbl 1045.39012
[29] Topal, S. G., Second-order periodic boundary value problems on time scales, Comput. Math. Appl., 48, 637-648 (2004) · Zbl 1068.34016
[30] Zhang, G.; Yang, Z. L., Existence of \(2^n\) nontrivial solutions for discrete two-point boundary value problems, Nonlinear Anal., 59, 1181-1187 (2004) · Zbl 1062.39020
[31] Zhou, Z.; Yu, J. S.; Guo, Z. M., Periodic solutions of higher dimensional discrete systems, Proc. Roy. Soc. Edinburgh Sect. A, 134, 1013-1022 (2004) · Zbl 1073.39010
[32] Zhou, Z.; Yu, J. S.; Guo, Z. M., The existence of periodic and subharmonic solutions to subquadratic discrete Hamiltonian systems, ANZIAM J., 47, 89-102 (2005) · Zbl 1081.39019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.