×

Trace conditions for regular spectral behavior of vector-valued analytic functions. (English) Zbl 1188.47014

The authors consider the so-called logarithmic residue
\[ \frac{1}{2\pi i} \int_\Delta F'(\lambda) F'(\lambda)^{-1} \]
of a function \(F\) with values in a complex Banach algebra and \(\Delta\) a bounded Cauchy domain in \(\mathbb C\) such that \(F\) is invertible on \(\partial \Delta\). If \(F\) is invertible in every \(\lambda\in\Delta\), then the logarithmic residue is zero by Cauchy’s theorem.
A function is called spectrally regular if also the reverse holds, that is, if the vanishing of its logarithmic residue on every Cauchy domain where it makes sense, implies that \(F(\lambda)\) is invertible for every \(\lambda\) in the domain. The authors are interested in giving conditions when \(F\) is spectrally regular. To this end, they consider plain functions, that is, functions that are analytically equivalent to elementary polynomials, or more generally, to \(J\)-plain functions, where \(J\) is an ideal in the Banach algebra. As main results, the authors show that a \(J\)-plain function is spectrally regular if there exists a \(J\)-resolving family of traces.

MSC:

47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
46H99 Topological algebras, normed rings and algebras, Banach algebras
30G30 Other generalizations of analytic functions (including abstract-valued functions)
Full Text: DOI

References:

[1] Amitsur, S. A.; Levitzki, J., Minimal identities for algebras, Proc. Amer. Math. Soc., 1, 449-463 (1950) · Zbl 0040.01101
[2] Bart, H., Spectral properties of locally holomorphic vector-valued functions, Pacific J. Math., 52, 321-329 (1974) · Zbl 0287.46049
[3] Bart, H.; Ehrhardt, T.; Silbermann, B., Zero sums of idempotents in Banach algebras, Integral Equations Operator Theory, 19, 125-134 (1994) · Zbl 0811.46042
[4] Bart, H.; Ehrhardt, T.; Silbermann, B., Logarithmic residues in Banach algebras, Integral Equations Operator Theory, 19, 135-152 (1994) · Zbl 0811.46043
[5] Bart, H.; Ehrhardt, T.; Silbermann, B.; residues, Logarithmic, generalized idempotents and sums of idempotents in Banach algebras, Integral Equations Operator Theory, 29, 155-186 (1997) · Zbl 0894.46038
[6] Bart, H.; Ehrhardt, T.; Silbermann, B., Sums of idempotents and logarithmic residues in matrix algebras, (Operator Theory: Advances and Applications, vol. 122 (2001), Birkhäuser: Birkhäuser Basel), 139-168 · Zbl 1047.46037
[7] Bart, H.; Ehrhardt, T.; Silbermann, B., Logarithmic residues of Fredholm operator valued functions and sums of finite rank projections, (Operator Theory: Advances and Applications, vol. 130 (2001), Birkhäuser: Birkhäuser Basel), 83-106 · Zbl 1051.30046
[8] Bart, H.; Ehrhardt, T.; Silbermann, B., Logarithmic residues of analytic Banach algebra valued functions possessing a simply meromorphic inverse, Linear Algebra Appl., 341, 327-344 (2002) · Zbl 1014.46019
[9] Bart, H.; Ehrhardt, T.; Silbermann, B., Logarithmic residues in the Banach algebra generated by the compact operators and the identity, Math. Nachr., 268, 3-30 (2004) · Zbl 1069.47015
[10] H. Bart, T. Ehrhardt, B. Silbermann, Regular spectral behavior of vector-valued analytic functions and non-commutative Gelfand theory. forthcoming.; H. Bart, T. Ehrhardt, B. Silbermann, Regular spectral behavior of vector-valued analytic functions and non-commutative Gelfand theory. forthcoming. · Zbl 1188.47014
[11] H. Bart, T. Ehrhardt, B. Silbermann, Vector-valued logarithmic residues and the extraction of elementary factors, Econometric Institute, Erasmus University Rotterdam, Report No. EI 2007-31, 2007.; H. Bart, T. Ehrhardt, B. Silbermann, Vector-valued logarithmic residues and the extraction of elementary factors, Econometric Institute, Erasmus University Rotterdam, Report No. EI 2007-31, 2007.
[12] Bart, H.; Kaashoek, M. A.; Lay, D. C., The integral formula for the reduced algebraic multiplicity of meromorphic operator functions, Proc. Edinburgh Math. Soc., 21, 65-72 (1978) · Zbl 0376.47008
[13] F.-P. Boca, Rotation \(C^*\)-Algebras and almost Mathieu operators, Theta Series in Advanced Mathematics, Bucharest, 2001.; F.-P. Boca, Rotation \(C^*\)-Algebras and almost Mathieu operators, Theta Series in Advanced Mathematics, Bucharest, 2001. · Zbl 1191.47001
[14] Ehrhardt, T., Finite sums of idempotents and logarithmic residues on connected domains, Integral Equations Operator Theory, 21, 238-242 (1995) · Zbl 0828.30024
[15] I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of linear operators, vol. I, Operator Theory: Advances and Applications, vol. 49, Birkhäuser, Basel 1990.; I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of linear operators, vol. I, Operator Theory: Advances and Applications, vol. 49, Birkhäuser, Basel 1990. · Zbl 0745.47002
[16] Gohberg, I.; Kaashoek, M. A.; Lay, D. C., Equivalence, linearization and decomposition of holomorphic operator functions, J. Funct. Anal., 28, 102-144 (1978) · Zbl 0384.47018
[17] I.C. Gohberg, E.I. Sigal, An operator generalization of the logarithmic residue theorem and the theorem of Rouché, Mat. Sbornik 84 (126) (1971) 607-629 (in Russian), English Transl. in: Math. USSR Sbornik 13 (1971), 603-625.; I.C. Gohberg, E.I. Sigal, An operator generalization of the logarithmic residue theorem and the theorem of Rouché, Mat. Sbornik 84 (126) (1971) 607-629 (in Russian), English Transl. in: Math. USSR Sbornik 13 (1971), 603-625. · Zbl 0254.47046
[18] Gohberg, I. C.; Sigal, E. I., Global factorization of meromorphic operator functions and some applications, Mat. Issled., 6, 1, 63-82 (1971), (Russian) · Zbl 0235.47008
[19] Krupnik, N. Ya., Banach algebras with symbol and singular integral operators, (Operator Theory: Advances and Applications, vol. 26 (1987), Birkhäuser: Birkhäuser Basel) · Zbl 0641.47030
[20] Lomonosov, V.; Rosenthal, P., The simplest proof of Burnside’s Theorem on matrix algebras, Linear Algebra Appl., 383, 45-47 (2004) · Zbl 1058.15019
[21] Lay, D. C., Subspaces and Echelon Forms, College Math. J., 24, 1, 57-62 (1993)
[22] Levitzki, J., A theorem on polynomial identities, Proc. Amer. Math. Soc., 1, 334-341 (1950) · Zbl 0037.30604
[23] A.S. Markus, E.I. Sigal, The multiplicity of the characteristic number of an analytic operator function, Mat. Issled. 5(3(17)) (1970) 129-147 (in Russian).; A.S. Markus, E.I. Sigal, The multiplicity of the characteristic number of an analytic operator function, Mat. Issled. 5(3(17)) (1970) 129-147 (in Russian). · Zbl 0234.47013
[24] Mittenthal, L., Operator valued analytic functions and generalizations of spectral theory, Pacific J. Math., 24, 119-132 (1968) · Zbl 0155.19201
[25] Strang, G., Introduction to Linear Algebra (2003), Wellesley-Cambridge Press: Wellesley-Cambridge Press Wellesley, MA · Zbl 1046.15001
[26] Stummel, F.; II, Diskrete konvergenz linearer operatoren., Math. Zeitschr., 120, 231-264 (1971) · Zbl 0209.15502
[27] Surowski, D.; Wang, Y., The uniqueness of strong row Echelon form, Missouri J. Math. Sci., 15, 1, 36-39 (2003) · Zbl 1033.15007
[28] Taylor, A. E.; Lay, D. C., Introduction to Functional Analysis (1980), John Wiley & Sons: John Wiley & Sons New York · Zbl 0501.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.