×

Elliptic regularization for the semi-linear telegraph system. (English) Zbl 1188.35013

Let \(Q=(0,T)\times(0,1).\) This paper is concerned with the singularly perturbed problem \(T_\varepsilon\), of elliptic-hyperbolic type, in \(Q\), consisting of the system
\[ \begin{aligned} \varepsilon\frac{\partial^2u}{\partial t^2}- \dfrac{\partial u}{\partial t}&= \frac{\partial v}{\partial x}+F(x,u(t,x))-f(t,x)\\ \varepsilon\frac{\partial^2v}{\partial t^2} -\frac{\partial v}{\partial t}&= \frac{\partial u}{\partial x}+G(x,v(t,x))-g(t,x) \end{aligned} \tag{S}\(_\varepsilon\) \]
and the conditions:
\[ \begin{aligned} u(t,0)=u(t,1)=0,&\quad 0<t<T,\\ u(0,x)=a_1(x), \quad v(0,x)=a_2(x), &\quad 0<x<1 \end{aligned}\tag{1} \]
and
\[ u(T,x)=b_1(x),\quad v(T,x)=b_2(x),\quad 0<x<1.\tag{2} \]
In the context of Hilbert Sobolev spaces and variational methods, under suitable assumptions on the data, the limit problem \(T_o\), as \(\varepsilon\to 0\), is the hyperbolic telegraph system \((S_o)\) (\(\varepsilon=0\) in S\(_\varepsilon)\), together with conditions (1). The authors study existence, uniqueness, regularity of solutions \((u_\varepsilon,v_\varepsilon)\) to \(T_\varepsilon\), \((u,v)\) to \(T_o\), and the asymptotic behavior of \((u_\varepsilon,v_\varepsilon)\), in terms of \((u,v)\), as \(\varepsilon\to 0\). The main tool, in their investigations is the theory of maximal monotone operators.

MSC:

35B25 Singular perturbations in context of PDEs
35J65 Nonlinear boundary value problems for linear elliptic equations
35L50 Initial-boundary value problems for first-order hyperbolic systems
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
47H05 Monotone operators and generalizations

Citations:

Zbl 0252.47055
Full Text: DOI

References:

[1] Barbu, V., Nonlinear boundary value problems for a class of hyperbolic systems, Rev. Roumaine Math. Pures Appl., 22, 2, 155-168 (1977) · Zbl 0364.35038
[2] Hokkanen, V. M.; Morosanu, G., Functional Methods in Differential Equations (2002), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, London, New York, Washington, DC · Zbl 1032.35003
[3] Aftabizadeh, A. R.; Pavel, N. H., Nonlinear boundary value problems for some ordinary and partial differential equations associated with monotone operators, J. Math. Anal. Appl., 156, 535-557 (1991) · Zbl 0734.34060
[4] Poffald, E.; Reich, S., An incomplete Cauchy problem, J. Math. Anal. Appl., 113, 514-543 (1986) · Zbl 0599.34078
[5] Mitidieri, E., Asymptotic behaviour of some second-order evolution equations, Nonlinear Anal., TMA, 6, 1245-1252 (1982) · Zbl 0504.47040
[6] Mitidieri, E., Some remarks on the asymptotic behaviour of the solutions of second-order evolution equations, J. Math. Anal. Appl., 107, 211-221 (1985) · Zbl 0594.34070
[7] Djafari Rouhani, B.; Khatibzadeh, H., Asymptotic behavior of bounded solutions to a class of second order nonhomogeneous evolution equations, Nonlinear Anal., TMA, 70, 4369-4376 (2009) · Zbl 1175.34078
[8] Djafari Rouhani, B.; Khatibzadeh, H., Asymptotic behavior of bounded solutions to a nonhomogeneous second-order evolution equation of monotone type, Nonlinear Anal., TMA, 71, e147-e152 (2009) · Zbl 1238.34115
[9] Vishik, M.; Lyusternik, L., Regular degeneration and boundary layer for linear differential equations with small parameter multiplying the highest derivatives, Uspekhi Mat. Nauk, 12, 3-122 (1957), (in Russian), Amer. Math. Soc. Transl., Ser. 2, 20 (1962) 239-364 · Zbl 0087.29602
[10] Vasilieva, A.; Butuzov, V.; Kalachev, L., The Boundary Function Method for Singular Perturbation Problems (1995), SIAM: SIAM Philadelphia · Zbl 0823.34059
[11] L.R. Volevich, The Vishik-Lyusternik method in general elliptic boundary value problems with small parameter, Institute of Applied Mathematics, Moscow, (2002), Preprint No. 26; L.R. Volevich, The Vishik-Lyusternik method in general elliptic boundary value problems with small parameter, Institute of Applied Mathematics, Moscow, (2002), Preprint No. 26
[12] Volevich, L. R., The Vishik-Lyusternik method in elliptic problems with a small parameter, Trudy Mosk. Mat. Obshch.. Trudy Mosk. Mat. Obshch., Trans. Moscow Math. Soc., 67, 87-125 (2006), (in Russian) · Zbl 1219.35082
[13] Apreutesei, N. C., First order asymptotic approximation for a class of elliptic equations, Comm. Appl. Nonlinear Anal., 8, 89-101 (2001) · Zbl 0987.35047
[14] Apreutesei, N. C., An asymptotic approximation for a semi-linear elliptic equation, Commun. Appl. Anal., 7, 1, 67-77 (2003) · Zbl 1085.35503
[15] Apreutesei, N.; Volpert, V., Elliptic regularization for the heat equation with nonlinear boundary conditions, Asymptot. Anal., 35, 2, 151-164 (2003) · Zbl 1043.35024
[16] Barbu, L.; Morosanu, G., Singularly Perturbed Boundary Value Problems (2007), Birkhauser · Zbl 1128.35001
[17] Sun, Y.; Liu, L.; Zhang, J.; Agarwal, R., Positive solutions of singular three-point boundary value problems for second-order differential equations, J. Comput. Appl. Math., 230, 2, 738-750 (2009) · Zbl 1173.34016
[18] Lions, J. L., Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal (1973), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0268.49001
[19] Bruck, R. E., Periodic forcing of solutions of a boundary value problem for a second order differential equation in Hilbert space, J. Math. Anal. Appl., 76, 159-173 (1980) · Zbl 0437.34053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.