×

Velocity slip in microscale cylindrical Couette flow: the Langmuir model. (English) Zbl 1187.76377

Editorial remark: No review copy delivered.

MSC:

76-XX Fluid mechanics

References:

[1] DOI: 10.1098/rsta.2003.1281 · Zbl 1068.76044 · doi:10.1098/rsta.2003.1281
[2] Karniadakis G. E., Micro Flows: Fundamentals and Simulation (2002)
[3] Chapman S., The Mathematical Theory of Nonuniform Gases, 3. ed. (1970)
[4] Eu B. C., Kinetic Theory and Irreversible Thermodynamics (1992)
[5] DOI: 10.1007/0-306-48049-2 · doi:10.1007/0-306-48049-2
[6] Gombosi T. I., Gaskinetic Theory (2002)
[7] Cercignani C., Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations (2000) · Zbl 0961.76002
[8] DOI: 10.1098/rstl.1879.0067 · JFM 11.0777.01 · doi:10.1098/rstl.1879.0067
[9] Shih J. C., ASME MEMS, DSC 59 pp 197– (1996)
[10] DOI: 10.1109/84.585795 · doi:10.1109/84.585795
[11] R. Schamberg, ”The fundamental differential equations and the boundary conditions for high speed slip flow,” Ph.D. thesis, California Institute of Technology, 1947.
[12] T. C. Lin, and R. E. Street, ”Effect of variable viscosity and thermal conductivity on high-speed slip flow between concentric cylinders,” NACA Report No. 1175, 1954 (unpublished).
[13] DOI: 10.1063/1.864565 · doi:10.1063/1.864565
[14] DOI: 10.1103/PhysRevLett.64.2269 · doi:10.1103/PhysRevLett.64.2269
[15] DOI: 10.1103/PhysRevE.56.2282 · doi:10.1103/PhysRevE.56.2282
[16] DOI: 10.1103/PhysRevE.68.016302 · doi:10.1103/PhysRevE.68.016302
[17] DOI: 10.1103/PhysRevE.70.017303 · doi:10.1103/PhysRevE.70.017303
[18] DOI: 10.1063/1.1868034 · Zbl 1187.76592 · doi:10.1063/1.1868034
[19] DOI: 10.1063/1.1693428 · doi:10.1063/1.1693428
[20] Bird G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows (1994)
[21] DOI: 10.1139/p87-180 · doi:10.1139/p87-180
[22] DOI: 10.1103/PhysRevA.35.821 · doi:10.1103/PhysRevA.35.821
[23] R. S. Myong, ”Velocity-slip effect in low-speed microscale gas flows,” AIAA Paper No. 2001-3076, 2001 (unpublished).
[24] DOI: 10.1063/1.1630799 · Zbl 1186.76389 · doi:10.1063/1.1630799
[25] DOI: 10.1016/j.jcp.2003.10.015 · Zbl 1115.76405 · doi:10.1016/j.jcp.2003.10.015
[26] DOI: 10.1021/cr60045a001 · doi:10.1021/cr60045a001
[27] Adamson A. W., Physical Chemistry of Surfaces (1982)
[28] DOI: 10.1063/1.1762263 · doi:10.1063/1.1762263
[29] Livio M., The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number (2002) · Zbl 1136.00005
[30] DOI: 10.1002/cpa.3160020403 · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[31] DOI: 10.1063/1.870137 · Zbl 1149.76489 · doi:10.1063/1.870137
[32] DOI: 10.1103/PhysRevA.39.728 · doi:10.1103/PhysRevA.39.728
[33] DOI: 10.1142/S0218202500000069 · Zbl 1035.76042 · doi:10.1142/S0218202500000069
[34] DOI: 10.1007/s001610100051 · Zbl 1100.76584 · doi:10.1007/s001610100051
[35] DOI: 10.1142/S0218202502001738 · Zbl 1069.76047 · doi:10.1142/S0218202502001738
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.