×

The relation between the Jacobi morphism and the Hessian in gauge-natural field theories. (English. Russian original) Zbl 1186.70020

Theor. Math. Phys. 152, No. 2, 1191-1200 (2007); translation from Teor. Mat. Fiz. 152, No. 2, 377-389 (2007).
Summary: We generalize a classic result, due to Goldschmidt and Sternberg, relating the Jacobi morphism and the Hessian for first-order field theories to higher-order gauge-natural field theories. In particular, we define a generalized gauge-natural Jacobi morphism where the variation vector fields are Lie derivatives of sections of the gauge-natural bundle with respect to gauge-natural lifts of infinitesimal principal automorphisms, and we relate it to the Hessian. The Hessian is also very simply related to the generalized Bergmann-Bianchi morphism, whose kernel provides necessary and sufficient conditions for the existence of global canonical superpotentials. We find that the Hamilton equations for the Hamiltonian connection associated with a suitably defined covariant strongly conserved current are satisfied identically and can be interpreted as generalized Bergmann-Bianchi identities and thus characterized in terms of the Hessian vanishing.

MSC:

70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
Full Text: DOI

References:

[1] H. Goldschmidt and S. Sternberg, Ann. Inst. Fourier, 23, 203–267 (1973).
[2] A. V. Bocharov et al., Symmetries and Laws of Conservation for Equations of Mathematical Physics [in Russian], Faktorial, Moscow (1997); English transl.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, (Transl. Math. Monogr., Vol. 182, I. S. Krasil’shchik and A. M. Vinogradov, eds.), Amer. Math. Soc., Providence, R. I. (1999).
[3] I. Kolář, P. W. Michor, and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin (1993). · Zbl 0782.53013
[4] D. Krupka, ”Some geometric aspects of variational problems in fibred manifolds,” in: Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica, Vol. 14, J. E. Purkyně Univ., Brno (1973), p. 1–65; arXiv:math-ph/0110005v2 (2001).
[5] B. A. Kuperschmidt, ”Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism,” in: Geometric Methods in Mathematical Physics (Lect. Notes Math., Vol. 775, G. Kaiser and J. E. Marsden, eds.), Springer, Berlin (1980), p. 162–218. · Zbl 0439.58016
[6] P. J. Olver, Applications of Lie Groups to Differential Equations (Grad. Texts in Math., Vol. 107, 2nd ed.), Springer, New York (1993). · Zbl 0785.58003
[7] R. S. Palais, Foundations of Global Non-linear Analysis, Benjamin, New York (1968). · Zbl 0164.11102
[8] D. J. Saunders, The Geometry of Jet Bundles (London Math. Soc. Lect. Note Ser., Vol. 142), Cambridge Univ. Press, Cambridge (1989). · Zbl 0665.58002
[9] A. M. Vinogradov, J. Math. Anal. Appl., 100, No. 1, 1–40, 41–129 (1984). · Zbl 0548.58014 · doi:10.1016/0022-247X(84)90071-4
[10] F. Takens, J. Differential Geom., 14, 543–562 (1979).
[11] W. M. Tulczyjew, Bull. Soc. Math. France, 105, 419–431 (1977).
[12] A. M. Vinogradov, Soviet Math. Dokl., 18, 1200–1204 (1977).
[13] A. M. Vinogradov, Soviet Math. Dokl., 19, 144–148 (1978).
[14] R. Vitolo, Differential Geom. Appl., 10, 225–255 (1999). · Zbl 0930.58001 · doi:10.1016/S0926-2245(99)00011-X
[15] P. G. Bergmann, Phys. Rev., 75, 680–685 (1949). · Zbl 0039.23004 · doi:10.1103/PhysRev.75.680
[16] E. Noether, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 2, 235–257 (1918).
[17] L. Fatibene, M. Francaviglia, and M. Palese, Math. Proc. Cambridge Philos. Soc., 130, 555–569 (2001). · Zbl 0988.58006 · doi:10.1017/S0305004101004881
[18] P. Matteucci, Rep. Math. Phys., 52, 115–139 (2003). · Zbl 1040.83035 · doi:10.1016/S0034-4877(03)90007-3
[19] J. L. Anderson and P. G. Bergmann, Phys. Rev., 83, 1018–1025 (1951). · Zbl 0045.45505 · doi:10.1103/PhysRev.83.1018
[20] M. Palese and E. Winterroth, Arch. Math. (Brno), 41, 289–310 (2005).
[21] M. Palese and E. Winterroth, Rep. Math. Phys., 54, 349–364 (2004). · Zbl 1066.58009 · doi:10.1016/S0034-4877(04)80024-7
[22] M. Francaviglia, M. Palese, and E. Winterroth, Rep. Math. Phys., 56, 11–22 (2005); arXiv: math-ph/0407054v4 (2004). · Zbl 1087.58009 · doi:10.1016/S0034-4877(05)80038-2
[23] M. Francaviglia, M. Palese, and E. Winterroth, ”Second variational derivative of gauge-natural invariant Lagrangians and conservation laws,” in: Differential Geometry and its Applications (Proc. 9th Intl. Conf., Prague, Czech Republic, 2004, J. Bures et al., eds.), Matfyzpress, Prague (2005), p. 591–604. · Zbl 1109.58005
[24] M. Palese and E. Winterroth, ”Gauge-natural field theories and Noether theorems: Canonical covariant conserved currents,” in: Proc. 25th Winter School ”Geometry and Physics,” Srni, January 15–22, 2005 (Suppl., Serie II num. 79), Rend. Circ. Mat., Palermo (2006), pp. 161–174. · Zbl 1113.58002
[25] M. Francaviglia, M. Palese, and R. Vitolo, Differential Geom. Appl., 22, 105–120 (2005). · Zbl 1065.58010 · doi:10.1016/j.difgeo.2004.07.008
[26] M. Giaquinta and S. Hildebrandt, Calculus of Variations (Grundlehren Math. Wiss., Vol. 310), Vol. 1, The Lagrangian Formalism, Springer, Berlin (1996). · Zbl 0853.49001
[27] R. Vitolo, Math. Proc. Cambridge Philos. Soc., 125, 321–333 (1999). · Zbl 0927.58008 · doi:10.1017/S0305004198002837
[28] D. J. Eck, Mem. Amer. Math. Soc., 33, No. 247, 1–48 (1981).
[29] I. Kolář, J. Geom. Phys., 1, 127–137 (1984). · Zbl 0595.58016 · doi:10.1016/0393-0440(84)90007-X
[30] I. Kolář and R. Vitolo, Math. Proc. Cambridge Philos. Soc., 135, 277–290 (2003). · Zbl 1048.58012 · doi:10.1017/S0305004103006649
[31] D. Krupka, ”Variational sequences on finite order jet spaces,” in: Differential Geometry and its Applications (Brno, Czechoslovakia, 1989, J. Janyška and D. Krupka, eds.), World Scientific, Singapore (1990), p. 236–254. · Zbl 0813.58014
[32] M. Francaviglia, M. Palese, and R. Vitolo, Czech. Math. J., 52(127), 197–213 (2002). · Zbl 1006.58014 · doi:10.1023/A:1021735824163
[33] M. Godina and P. Matteucci, Int. J. Geom. Meth. Mod. Phys., 2, 159–188 (2005). · doi:10.1142/S0219887805000624
[34] A. Trautman, Comm. Math. Phys., 6, 248–261 (1967). · Zbl 0172.27803 · doi:10.1007/BF01646018
[35] L. Mangiarotti and G. Sardanashvily, Connections in Classical and Quantum Field Theory, World Scientific, Singapore (2000). · Zbl 1053.53022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.