×

Second-order sensitivity of eigenpairs in multiple parameter structures. (English) Zbl 1186.65042

Summary: This paper presents methods for computing a second-order sensitivity matrix and the Hessian matrix of eigenvalues and eigenvectors of multiple parameter structures. Second-order perturbations of eigenvalues and eigenvectors are transformed into multiple parameter forms, and the second-order perturbation sensitivity matrices of eigenvalues and eigenvectors are developed. With these formulations, the efficient methods based on the second-order Taylor expansion and second-order perturbation are obtained to estimate changes of eigenvalues and eigenvectors when the design parameters are changed. The presented method avoids direct differential operation, and thus reduces difficulty for computing the second-order sensitivity matrices of eigenpairs. A numerical example is given to demonstrate application and accuracy of the proposed method.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
74K20 Plates
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Fox, R. L. and Kapoor, M. P. Rates of change of eigenvalues and eigenvectors. AIAA 6(12), 2426–2429 (1968) · Zbl 0181.53003 · doi:10.2514/3.5008
[2] Nelson, R. B. Simplified calculations of eigenvector derivative. AIAA 14, 1201–1205 (1976) · Zbl 0342.65021 · doi:10.2514/3.7211
[3] Juang, J. N., Ghaemmaghami, P., and Lim, K. B. Eigenvalue and eigenvector derivatives of a nondefective matrix. Journal of Guidance, Control Dynamics 12, 480–486 (1989) · Zbl 0709.65029 · doi:10.2514/3.20435
[4] Lee, I. W. and Jung, G. H. An efficient algebraic method for computation of natural frequency and mode shape sensitivities-part I. distinct natural frequencies. Computers and Structures 62(3), 429–435 (1997) · Zbl 0912.73080 · doi:10.1016/S0045-7949(96)00206-4
[5] Lee, I. W. and Jung, G. H. An efficient algebraic method for computation of natural frequency and mode shape sensitivities-part II. multiple natural frequencies. Computers and Structures 62(3), 437–443 (1997) · Zbl 0912.73080 · doi:10.1016/S0045-7949(96)00207-6
[6] Lim, K. B. and Junkins, J. L. Re-examination of eigenvector derivative. Journal of Guidance 10, 581–587 (1987) · Zbl 0657.15007 · doi:10.2514/3.20259
[7] Liu, Z. S., Chen, S. H., and Zhao, Y. Q. An accurate method for computing eigenvector derivatives for free-free structures. Computers and Structures 52, 1135–1143 (1994) · Zbl 0879.73029 · doi:10.1016/0045-7949(94)90180-5
[8] Moon, Y. J., Kim, B. W., Ko, M. G., and Lee, I. W. Modified modal methods for calculating eigenpair sensitivity of asymmetric damped system. International Journal for Numerical Methods in Engineering 60, 1847–1860 (2004) · Zbl 1060.70511 · doi:10.1002/nme.1025
[9] Gong, Y. L. and Xu, L. Sensitivity analysis of steel moment frame accounting for geometric and material nonlinearity. Computers and Structures 84, 462–475 (2006) · doi:10.1016/j.compstruc.2005.10.005
[10] Maddulapalli, A. K., Azarm, S., and Boyars, A. Sensitivity analysis for product design selection with an implicit value function. European Journal of Operation Research 80, 1245–1259 (2007) · Zbl 1121.90363 · doi:10.1016/j.ejor.2006.03.055
[11] Choi, K. M., Jo, H. K., Kim, W. H., and Lee, I. W. Sensitivity analysis of non-conservative eigensystems. Journal of Sound and Vibration 274, 997–1011 (2004) · doi:10.1016/S0022-460X(03)00660-6
[12] Chen, S. H. Matrix Perturbation Theory in Structural Dynamic Design, Science Press, Beijing (2007)
[13] Liu, X. L. Accurate modal perturbation in non-self-adjoint eigenvalue problem. Communications in Numerical Methods in Engineering 17, 715–725 (2001) · Zbl 0990.65045 · doi:10.1002/cnm.443
[14] Godoy, A., Taroco, E. O., and Feijoo, R. A. Second-order sensitivity analysis in vibration and buckling problems. International Journal for Numerical Methods in Engineering 37(23), 3999–4014 (1994) · Zbl 0814.73078 · doi:10.1002/nme.1620372305
[15] Mirzaeifar, R., Bahai, H., Aryana, F., and Yeilaghi, A. Optimization of the dynamic characteristics of composite plates using an inverse approach. Journal of Composite Materials 41(26), 3091–3108 (2007) · Zbl 1194.74106 · doi:10.1177/0021998307082178
[16] Mirzaeifar, R., Bahai, H., and Shahab, S. Active control of natural frequencies of FGM plates by piezoelectric sensor/actuator pairs. Smart Materials and Structures 17(4) (2008) DOI: 10.1088/0964-1726/17/4/045003 · Zbl 1158.74370
[17] Mirzaeifar, R., Bahai, H., and Shahab, S. A new method for finding the first- and second-order eigenderivatives of asymmetric non-conservative systems with application to an FGM plate actively controlled by piezoelectric sensor/actuators. International Journal for Numerical Methods in Engineering 75(12), 1492–1510 (2008) · Zbl 1158.74370 · doi:10.1002/nme.2308
[18] Aryana, F. and Bahai, H. Sensitivity analysis and modification of structural dynamic characteristics using second order approximation. Engineering Structures 25(10), 1279–1287 (2003) · doi:10.1016/S0141-0296(03)00078-6
[19] Bahai, H., Farahani, K., and Djoudi, M. S. Eigenvalue inverse formulation for optimizing vibratory behavior of truss and continuous structures. Computers and Structures 80, 2397–2403 (2002) · doi:10.1016/S0045-7949(02)00249-3
[20] Farahani, K. and Bahai, H. An inverse strategy for relocation of eigenfrequencies in structural design, part II: second order approximate solutions. Journal of Sound and Vibration 274, 507–528 (2004) · doi:10.1016/j.jsv.2003.11.013
[21] Choi, K. M., Cho, S. W., Ko, M. G., and Lee, I. W. Higher order eigensensitivity analysis of damped systems with repeated eigenvalues. Computers and Structures 82, 63–69 (2004) · doi:10.1016/j.compstruc.2003.08.001
[22] Guedria, N., Chouchane, M., and Smaoui, H. Second-order eigensensitivity analysis of asymmetric damped systems using Nelson’s method. Journal of Sound and Virbation 300, 974–992 (2007) · doi:10.1016/j.jsv.2006.09.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.