×

An identity with generalized derivations. (English) Zbl 1186.16050

Let \(R\) be a prime ring. By a derivation of \(R\), we mean a map \(\delta\colon R\to R\) such that \(\delta(x+y)=\delta(x)+\delta(y)\) and \(\delta(xy)=\delta(x)y+x\delta(y)\) for all \(x,y\in R\). A map \(G\colon R\to R\) is called a generalized derivation if there exists a derivation \(\delta\colon R\to R\) such that \(G(x+y)=G(x)+G(y)\) and \(G(xy)=G(x)y+x\delta(y)\) for all \(x,y\in R\). The derivation \(\delta\) is called the associated derivation of \(G\) and is uniquely determined by the generalized derivation \(G\).
In this paper the authors study a polynomial identity with a pair of generalized derivations. The following theorem is obtained. Let \(R\) be prime ring that is not commutative and such that \(R\ncong M_2(\text{GF}(2))\), \(Q\) be the symmetric Martindale quotient ring of \(R\) and \(C\) be its extended centroid. Let \(D,G\) be two generalized derivations of \(R\), and let \(m,n\) be two fixed positive integers. Then \(D(x^m)x^n=x^nG(x^m)\) for all \(x\in R\) if and only if the following two conditions hold: (i) There exists \(w\in Q\) such that \(D(x)=xw\) and \(G(x)=wx\) for all \(x\in R\); (2) either \(w\in C\), or \(x^m\) and \(x^n\) are \(C\)-dependent for all \(x\in R\).
Reviewer: Wei Feng (Beijing)

MSC:

16W25 Derivations, actions of Lie algebras
16N60 Prime and semiprime associative rings
16R50 Other kinds of identities (generalized polynomial, rational, involution)
Full Text: DOI

References:

[1] DOI: 10.1090/S0002-9939-1973-0312313-6 · doi:10.1090/S0002-9939-1973-0312313-6
[2] DOI: 10.1090/S0002-9939-99-04899-6 · Zbl 0921.47031 · doi:10.1090/S0002-9939-99-04899-6
[3] Beidar K. I., Monographs and Textbooks in Pure and Applied Mathematics 196, in: Rings with Generalized Identities (1996)
[4] DOI: 10.1017/S0017089500008077 · Zbl 0731.47037 · doi:10.1017/S0017089500008077
[5] DOI: 10.1006/jabr.1995.1069 · Zbl 0827.16024 · doi:10.1006/jabr.1995.1069
[6] Brešar M., Proc. Roy. Soc. Edinburgh Sect. A 137 pp 9– · Zbl 1130.16018 · doi:10.1017/S0308210504001088
[7] Chang C.-M., Southeast Asian Bull. Math. 21 pp 215–
[8] DOI: 10.1007/BF02769465 · Zbl 0618.16002 · doi:10.1007/BF02769465
[9] DOI: 10.1090/S0002-9939-1988-0947646-4 · doi:10.1090/S0002-9939-1988-0947646-4
[10] DOI: 10.4153/CMB-1978-040-0 · Zbl 0395.16029 · doi:10.4153/CMB-1978-040-0
[11] Herstein I. N., The Carus Mathematical Monographs 15, in: Noncommutative Rings (1968) · Zbl 0177.05801
[12] Herstein I. N., Topics in Ring Theory (1969) · Zbl 0232.16001
[13] DOI: 10.1080/00927879808826190 · Zbl 0899.16018 · doi:10.1080/00927879808826190
[14] Jacobson N., Lecture Notes in Mathematics 441, in: PI-Algebras: An Introduction (1975) · doi:10.1007/BFb0070021
[15] Kharchenko V. K., Algebra i Logika 17 pp 220–
[16] Lee T.-K., Bull. Inst. Math. Acad. Sinica 20 pp 27–
[17] Lee T.-K., Algebra Colloq. 3 pp 19–
[18] DOI: 10.1080/00927879908826682 · Zbl 0946.16026 · doi:10.1080/00927879908826682
[19] DOI: 10.2140/pjm.2004.216.293 · Zbl 1078.16038 · doi:10.2140/pjm.2004.216.293
[20] DOI: 10.1080/00927870701247062 · Zbl 1129.16018 · doi:10.1080/00927870701247062
[21] DOI: 10.1016/0021-8693(69)90029-5 · Zbl 0175.03102 · doi:10.1016/0021-8693(69)90029-5
[22] DOI: 10.1007/BF02672899 · doi:10.1007/BF02672899
[23] Thaheemand A. B., Demonstratio Math. 34 pp 783–
[24] DOI: 10.3336/gm.40.2.01 · Zbl 1093.16033 · doi:10.3336/gm.40.2.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.