×

Exploiting structure in large-scale electrical circuit and power system problems. (English) Zbl 1185.93010

The rapid increase in complexity of systems such as electrical circuits and power systems calls for the development of efficient numerical methods. In many cases, direct application of standardized methods for numerical problems is computationally not feasible or inefficient. However, the performance of such methods can be improved considerably by taking into account the structure of the underlying problem. In this paper, we describe when and how this – mathematical and/or physical – structure can be exploited to arrive at efficient algorithms that also suffer less from other numerical issues such as round-off errors. Eigenvalue and stability problems are considered in particular, but applications to other problems are shown as well.

MSC:

93A15 Large-scale systems
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F50 Computational methods for sparse matrices
93C40 Adaptive control/observation systems
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
93B11 System structure simplification
Full Text: DOI

References:

[1] Hsim. <http://www.synopsys.com/products/mixedsignal/hsim/hsim.html>.; Hsim. <http://www.synopsys.com/products/mixedsignal/hsim/hsim.html>.
[2] Amestoy, P. R.; Davis, T. A.; Duff, I. S., An approximate minimum degree ordering algorithm, SIAM J. Matrix Anal. Appl., 17, 4, 886-905 (1996) · Zbl 0861.65021
[3] Antoulas, A. C., Approximation of Large-Scale Dynamical Systems (2005), SIAM · Zbl 1112.93002
[4] U. Baur, Control-Oriented Model Reduction for Parabolic Systems, Ph.D. Thesis, Technische Universität, Berlin, 2008.; U. Baur, Control-Oriented Model Reduction for Parabolic Systems, Ph.D. Thesis, Technische Universität, Berlin, 2008. · Zbl 1210.93002
[5] (Benner, P.; Mehrmann, V.; Sorensen, D., Dimension Reduction of Large-Scale Systems. Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol. 45 (2005), Springer) · Zbl 1066.65004
[6] Bezerra, L. H.; Tomei, C., Spectral transformation algorithms for computing unstable modes, Comput. Appl. Math., 18, 1, 1-15 (1999) · Zbl 0972.65028
[7] C.W. Bomhof, Jacobi-Davidson methods for eigenvalue problems in pole zero analysis, Nat. Lab. Unclassified Report 012/97, Philips Electronics NV, 1997.; C.W. Bomhof, Jacobi-Davidson methods for eigenvalue problems in pole zero analysis, Nat. Lab. Unclassified Report 012/97, Philips Electronics NV, 1997.
[8] (Ciarlet, P. G.; Schilders, W. H.A.; ter Maten, E. J.W., Numerical Methods in Electromagnetics. Numerical Methods in Electromagnetics, Handbook of Numerical Analysis, vol. 13 (2005), Elsevier) · Zbl 1064.65001
[9] Cliffe, K. A.; Garratt, T. J.; Spence, A., Eigenvalues of block matrices arising from problems in fluid mechanics, SIAM J. Matrix Anal. Appl., 15, 4, 1310-1318 (1994) · Zbl 0807.65030
[10] J.C.R. Ferraz, N. Martins, G.N. Taranto, Coordinated stabilizer tuning in large power systems considering multiple operating conditions, in: IEEE/PES General Meeting, June 2007, No. 07GM0304.; J.C.R. Ferraz, N. Martins, G.N. Taranto, Coordinated stabilizer tuning in large power systems considering multiple operating conditions, in: IEEE/PES General Meeting, June 2007, No. 07GM0304.
[11] Fokkema, D. R.; Sleijpen, G. L.G.; van der Vorst, H. A., Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20, 1, 94-125 (1998) · Zbl 0924.65027
[12] Freitas, F. D.; Rommes, J.; Martins, N., Gramian-based reduction method applied to large sparse power system descriptor models, IEEE Trans. Power Syst., 23, 3, 1258-1270 (2008)
[13] R.W. Freund, SPRIM: Structure-preserving reduced-order interconnect macromodeling, in: Technical Digest of the 2004 IEEE/ACM International Conference on CAD, 2004, pp. 80-87.; R.W. Freund, SPRIM: Structure-preserving reduced-order interconnect macromodeling, in: Technical Digest of the 2004 IEEE/ACM International Conference on CAD, 2004, pp. 80-87.
[14] Golub, G. H.; van Loan, C. F., Matrix Computations (1996), John Hopkins University Press · Zbl 0865.65009
[15] Heinkenschloss, M.; Sorensen, D. C.; Sun, K., Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations, SIAM J. Sci. Comput., 30, 2, 1038-1063 (2008) · Zbl 1216.76015
[16] Kundur, P., Power System Control and Stability (1994), McGraw-Hill
[17] Lehoucq, R. B.; Sorensen, D. C., Deflation techniques within an implicitly restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl., 17, 789-821 (1996) · Zbl 0863.65016
[18] R.H. Lehoucq, D.C. Sorensen, C. Yang, ARPACK SOFTWARE. <http://www.caam.rice.edu/software/ARPACK/>.; R.H. Lehoucq, D.C. Sorensen, C. Yang, ARPACK SOFTWARE. <http://www.caam.rice.edu/software/ARPACK/>.
[19] Li, J.-R.; White, J., Low rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl., 24, 1, 260-280 (2002) · Zbl 1016.65024
[20] Martins, N., Efficient eigenvalue and frequency response methods applied to power system small-signal stability studies, IEEE Trans. Power Syst., 1, 1, 217-226 (1986)
[21] Martins, N.; Lima, L. T.G.; Pinto, H. J.C. P., Computing dominant poles of power system transfer functions, IEEE Trans. Power Syst., 11, 1, 162-170 (1996)
[22] Meerbergen, K.; Spence, A., Implicitly restarted Arnoldi with purification for the shift-invert transformation, Math. Comp., 66, 218, 667-689 (1997) · Zbl 0864.65020
[23] Meerbergen, K.; Spence, A.; Roose, D., Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices, BIT, 34, 3, 409-423 (1994) · Zbl 0814.65037
[24] Moore, B. C., Principal component analysis in linear systems: controllability, observability and model reduction, IEEE Trans. Automat. Control, 26, 1, 17-32 (1981) · Zbl 0464.93022
[25] Penzl, T., Algorithms for model reduction of large dynamical systems, Linear Algebra Appl., 415, 2-3, 322-343 (2006) · Zbl 1092.65053
[26] Phillips, J. R.; Silveira, L. M., Poor man’s TBR: a simple model reduction scheme, IEEE Trans. CAD Circ. Syst., 24, 1, 283-288 (2005)
[27] Rommes, J., Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems \(Ax = \lambda Bx\) with singular \(B\), Math. Comput., 77, 262, 995-1015 (2008) · Zbl 1133.65020
[28] Rommes, J.; Martins, N., Computing large-scale system eigenvalues most sensitive to parameter changes, with applications to power system small-signal stability, IEEE Trans. Power Syst., 23, 4, 434-442 (2008)
[29] Rommes, J.; Martins, N., Efficient computation of transfer function dominant poles of large second-order dynamical systems, SIAM J. Sci. Comput., 30, 4, 2137-2157 (2008) · Zbl 1168.65338
[30] Rommes, J.; Sleijpen, G. L.G., Convergence of the dominant pole algorithm and Rayleigh quotient iteration, SIAM J. Matrix Anal. Appl., 30, 1, 346-363 (2008) · Zbl 1165.65016
[31] (Schilders, W. H.A.; van der Vorst, H. A.; Rommes, J., Model Order Reduction: Theory, Research Aspects and Applications. Model Order Reduction: Theory, Research Aspects and Applications, Mathematics in Industry, vol. 13 (2008), Springer) · Zbl 1143.65004
[32] Sleijpen, G. L.G.; van der Vorst, H. A., A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl., 17, 2, 401-425 (1996) · Zbl 0860.65023
[33] Sleijpen, G. L.G.; van der Vorst, H. A.; van Gijzen, M., Quadratic eigenproblems are no problem, SIAM News, 29, 7, 8-9 (1996)
[34] Sorensen, D. C., Implicit application of polynomial filters in a \(k\)-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13, 357-385 (1992) · Zbl 0763.65025
[35] T. Stykel, Analysis and Numerical Solution of Generalized Lyapunov Equations, Ph.D. Thesis, Technischen Universität Berlin, 2002.; T. Stykel, Analysis and Numerical Solution of Generalized Lyapunov Equations, Ph.D. Thesis, Technischen Universität Berlin, 2002. · Zbl 1097.65074
[36] Stykel, T., Gramian based model reduction for descriptor systems, Math. Control Signals Syst., 16, 297-319 (2004) · Zbl 1067.93011
[37] The Mathworks, Inc. Matlab.; The Mathworks, Inc. Matlab.
[38] Tisseur, F.; Meerbergen, K., The quadratic eigenvalue problem, SIAM Rev., 43, 2, 235-286 (2001) · Zbl 0985.65028
[39] van Noorden, T. L.; Rommes, J., Computing a partial generalized real Schur form using the Jacobi-Davidson method, Numer. Linear Algebra Appl., 14, 3, 197-215 (2007) · Zbl 1199.65126
[40] Yang, F.; Zeng, X.; Su, Y.; Zhou, D., RLC equivalent circuit synthesis method for structure-preserved reduced-order model of interconnect in VLSI, Commun. Comput. Phys., 3, 2, 376-396 (2008) · Zbl 1199.94126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.