×

A higher-order moment method of the lattice Boltzmann model for the conservation law equation. (English) Zbl 1185.76845

Summary: We propose a higher-order moment method in the lattice Boltzmann model for the conservation law equation. In contrast to the lattice Bhatnagar-Gross-Krook (BGK) model, the higher-order moment method has a wide flexibility to select equilibrium distribution function. This method is based on so-called a series of partial differential equations obtained by using multi-scale technique and Chapman-Enskog expansion. According to Hirt’s heuristic stability theory, the stability of the scheme can be controlled by modulating some special moments to design the third-order dispersion term and the fourth-order dissipation term. As results, the conservation law equation is recovered with higher-order truncation error. The numerical examples show the higher-order moment method can be used to raise the accuracy of the truncation error of the lattice Boltzmann scheme for the conservation law equation.

MSC:

76M28 Particle methods and lattice-gas methods
35L67 Shocks and singularities for hyperbolic equations
35Q20 Boltzmann equations
Full Text: DOI

References:

[1] Frisch, U.; Hasslacher, B.; Pomeau, Y., Lattice gas automata for the Navier-Stokes equations, Phys. Rev. Lett., 56, 1505-1508 (1986)
[2] Qian, Y. H.; d’humieres, D.; Lallemand, P., Lattice BGK model for Navier-Stokes equations, Europhys. Lett., 17, 6, 479-484 (1992) · Zbl 1116.76419
[3] Chen, H. D.; Chen, S. Y.; Matthaeus, M. H., Recovery of the Navier-Stokes equations using a lattice Boltzmann gas method, Phys. Rev. A, 45, 5339-5342 (1992)
[4] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann equations: theory and applications, Phys. Rep., 222, 147-197 (1992)
[5] Chen, S. Y.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Fluid Mech., 3, 314-322 (1998)
[6] Luo, L.-S., Theory of the lattice Boltzmann method: lattice Boltzmann method for nonideal gases, Phys. Rev. E, 62, 4982 (2000)
[7] Shan, X. W.; Chen, H. D., Lattice Boltzmann model of simulating flows with multiple phases and components, Phys. Rev. E, 47, 1815 (1993)
[8] Shan, X. W.; Chen, H. D., Simulation of non-ideal gases liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E, 49, 2941 (1994)
[9] Swift, M.; Osborn, W.; Yeomans, J., Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75, 830 (1995)
[10] Gustensen, K.; Rothman, D. H.; Zaleski, S., Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, 43, 4320-4327 (1991)
[11] Premnath, K. N.; Abraham, J., Three-dimensional multi-relaxation lattice Boltzmann models for multiphase flows, J. Comput. Phys., 224, 539-559 (2007) · Zbl 1116.76066
[12] Dawson, S. P.; Chen, S. Y.; Doolen, G., lattice Boltzmann computations for reaction-diffusion equations, J. Chem. Phys., 98, 1514-1523 (1993)
[13] Holdych, D. J.; Georgiadis Buckius, R. O., Magration of a van der Waals bubble: lattice Boltzmann formulation, Phys. Fluids, 13, 817 (2001) · Zbl 1184.76228
[14] Swift, M. R.; Orlandini, E.; Osborn, W. R., Lattice Boltzmann simulations of liquid-gas and binary systems, Phys. Rev. E, 54, 5041 (1996)
[15] Maier, R. S.; Bernard, R. S.; Grunau, D. W., Boundary conditions for the lattice Boltzmann method, Phys. Fluids, 6, 1788 (1996) · Zbl 1027.76632
[16] Succi, S.; Foti, E.; Higuera, F. J., 3-Dimensional flows in complex geometries with the lattice Boltzmann method, Europhys. Lett., 10, 433 (1989)
[17] Ladd, A., Numerical simulations of particle suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluids Mech., 271, 311 (1994)
[18] Filippova, O.; Hanel, D., Lattice Boltzmann simulation of gas-particle flow in filtes, Comput. Fluids, 26, 697-712 (1997) · Zbl 0902.76077
[19] Yan, G. W.; Chen, Y. S.; Hu, S. X., Simple lattice Boltzmann model for simulating flows with shock wave, Phys. Rev. E, 59, 454-459 (1999)
[20] Sun, C. H., Lattice-Boltzmann model for high speed flows, Phys. Rev. E, 58, 7283-7287 (1998)
[21] Alexander, F. J.; Chen, H.; Chen, S., Lattice Boltzmann model for compressible fluids, Phys. Rev. A, 46, 1967-1970 (1992)
[22] De Cicco, M.; Succi, S.; Balla, G., Nonlinear stability of compressible thermal lattice BGK model, SIAM J. Sci. Comput., 21, 366-377 (1999) · Zbl 0959.76073
[23] Mason, R. J., A compressible lattice Boltzmann model, Bull. Am. Phys. Soc., 45, 168-170 (2000)
[24] Mason, R. J., A multi-speed compressible lattice Boltzmann model, J. Stat. Phys., 107, 385-400 (2002) · Zbl 1126.76356
[25] Yan, G. W.; Dong, Y. F.; Liu, Y. H., An implicit Lagrangian lattice Boltzmann method for the compressible flows, Int. J. Numer. Methods Fluids, 51, 1407-1418 (2006) · Zbl 1158.76418
[26] Kataoka, T.; Tsutahara, M., Lattice Boltzmann method for the compressible Euler equations, Phys. Rev. E, 69, 5 (2004), Art No. 056702
[27] Kataoka, T.; Tsutahara, M., Lattice Boltzmann method for the compressible Navier-Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 69, 3 (2004), Art No. 035701
[28] Yan, G. W.; Zhang, J. Y.; Liu, Y. H., A multi-energy-level lattice Boltzmann model for the compressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 55, 41-56 (2007) · Zbl 1119.76049
[29] Yan, G. W., A lattice Boltzmann equation for waves, J. Comput. Phys., 161, 61-69 (2000) · Zbl 0969.76076
[30] Yan, G. W., Studies of Burgers equation using a lattice Boltzmann method, Acta Mech. Sinica, 31, 143-151 (1999), (in Chinese)
[31] Yan, G. W.; Song, M., Recovery of the solitons using a lattice Boltzmann model, Chinese Phys. Lett., 16, 109-110 (1999)
[32] Yan, G. W.; Yuan, L., Lattice Bhatnagar-Gross-Krook model for the Lorenz attractor, Physica D, 154, 43-50 (2001) · Zbl 1015.76068
[33] Zhou, J. G., Lattice Boltzmann Methods for Shallow Water Flows (2000), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, Germany
[34] Ginzburg, I., Variably saturated flow described with the anisotropic lattice Boltzmann methods, J. Comput. Fluids, 25, 831-848 (2006) · Zbl 1177.76314
[35] Chai, Z. H.; Shi, B. C., A novel lattice Boltzmann model for the Poisson equation, Appl. Math. Modell., 32, 2050-2058 (2008) · Zbl 1145.82344
[36] Succi, S., Numerical solution of the Schrödinger equation using discrete kinetic theory, Phys. Rev. E, 53, 1969-1975 (1996)
[37] Succi, S., Lattice quantum mechanics: an application to Bose-Einstein condensation, Int. J. Mod. Phys. C, 9, 1577-1585 (1998)
[38] Palpacelli, S.; Succi, S., Numerical validation of the quantum lattice Boltzmann scheme in two and three dimension, Phys. Rev. E, 75, 066704 (2007)
[39] Palpacelli, S.; Succi, S.; Spiggler, R., Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme, Phys. Rev. E, 76, 036712 (2007)
[40] Zhong, L. H.; Feng, S. D.; Dong, P.; Gao, S. T., Lattice Boltzmann schemes for the nonlinear Schrödinger equation, Phys. Rev. E, 74, 036704 (2006)
[41] Frisch, U.; d’Humières, D.; Hasslacher, B.; Lallemand, P.; Pomeau, Y.; Rivet, J. P., Lattice gas hydrodynamics in two and three dimensions, Complex Sys., 1, 649-707 (1987) · Zbl 0662.76101
[42] d’Humières, D., Generalized lattice-Boltzmann equations, AIAA rarefied gas dynamics: theory and simulations, Prog. Astronaut. Aeronaut., 59, 450-548 (1992)
[43] Yan, G. W.; Chen, Y. S.; Hu, S. X., A lattice Boltzmann method for KdV equation, Acta Mech. Sinica, 14, 18-26 (1998)
[44] Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann model for generic advection and anisotropic-dispersion equation, Adv. Water Resour., 28, 1171-1195 (2005)
[45] Lallemand, P.; Luo, L. S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability, Phys. Rev. E, 61, 6546-6562 (2000)
[46] d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L. S., Multiple-relaxation time lattice Boltzmann models in three-dimension, Phil. Trans. Royal Soc. Lond. A, 360, 437-451 (2002) · Zbl 1001.76081
[47] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-uniform Gas (1970), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0098.39702
[48] Holdych, D. J.; Noble, D. R.; Georgiadis, J. G., Truncation error analysis of lattice Boltzmann methods, J. Comput. Phys., 193, 595-619 (2004) · Zbl 1040.76052
[49] Shu, C. W.; Osher, Stanley, efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[50] Shu, C. W.; Osher, Stanley, efficient implementation of essentially non-oscillatory shock capturing schemes. II., J. Comput. Phys., 83, 32-78 (1989) · Zbl 0674.65061
[51] Harten, A., ENO schemes with subcell resolution, J. Comput. Phys., 83, 148-184 (1989) · Zbl 0696.65078
[52] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-419 (1990) · Zbl 0697.65068
[53] Hirt, C. W., Heuristic stability theory for finite-difference equations, J. Comput. Phys., 2, 339-355 (1968) · Zbl 0187.12101
[54] Wang, J.; Liu, R. X., A new approach to design high-order schemes, J. Comput. Appl. Math., 134, 59-67 (2001) · Zbl 0985.65104
[55] Yang, H., An artificial compression method for ENO schemes: the slope modification method, J. Comput. Phys., 89, 125-160 (1990) · Zbl 0705.65062
[56] Frisch, U., Relation between the lattice Boltzmann equation and the Navier-Stokes Equation, Physica D, 47, 231-232 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.