×

A review of a posteriori error control and adaptivity for approximations of non-linear conservation laws. (English) Zbl 1185.65163

Summary: We give an overview on recent progress in obtaining a posteriori error control for finite volume and discontinuous Galerkin approximations of non-linear hyperbolic conservation laws. The theory is based on the celebrated doubling of variables technique introduced by S. N. Kruzhkov [Math. USSR, Sb. 10, 217–243 (1970; Zbl 0215.16203)]. A posteriori error control is of particular importance as it can be used for designing efficient grid adaptive schemes. The derivation of such adaptive methods is discussed and numerical experiments are given.

MSC:

65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 0215.16203

Software:

DUNE
Full Text: DOI

References:

[1] Kruzkov, First order quasilinear equations in several independent variables, Mathematics of the USSR-Sbornik 10 pp 217– (1970)
[2] Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation, USSR Computational Mathematics and Mathematical Physics 16 (6) pp 159– (1976) · Zbl 0354.35021
[3] Kröner, A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions, Mathematics of Computation 69 pp 25– (2000) · Zbl 0934.65102
[4] Vol’pert, Cauchy’s problem for degenerate second order quasilinear parabolic equations, Mathematics of the USSR-Sbornik 7 (3) pp 365– (1969)
[5] Gallouët, A uniqueness result for measure-valued solutions of nonlinear hyperbolic equations, Differential and Integral Equations 6 (6) pp 1383– (1993) · Zbl 0806.35114
[6] Otto, Initial-boundary value problem for a scalar conservation law, Comptes Rendus de l Academie des Sciences Paris, Série I-Mathematique 322 (8) pp 729– (1996)
[7] Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numerische Mathematik 90 (3) pp 563– (2002) · Zbl 1007.65066
[8] Vila, Convergence and error estimates in finite volume schemes for general multi-dimensional scalar conservation laws. I. Explicit monotone schemes, RAIRO-Modélisation Mathematique et Analyse Numérique 28 pp 267– (1994)
[9] Cockburn, An error estimate for finite volume methods for multidimensional conservation laws, Mathematics of Computation 63 pp 77– (1994) · Zbl 0855.65103
[10] Eymard, Error estimates for the approximate solution of a nonlinear hyperbolic equation given by finite volume schemes, IMA Journal of Numerical Analysis 18 pp 563– (1998) · Zbl 0973.65078
[11] Cockburn, A priori error estimates for numerical methods for scalar conservation laws. Part I: the general approach, Mathematics of Computation 65 pp 533– (1996) · Zbl 0848.65067
[12] Cockburn, A priori error estimates for numerical methods for scalar conservation laws. Part 2: flux splitting montone schemes on irregular Cartesian grids, Mathematics of Computation 66 pp 547– (1996)
[13] Cockburn, A priori error estimates for numerical methods for scalar conservation laws. Part III: multidimensional flux-splitting monotone schemes on non-Cartesian grids, Mathematics of Computation 65 pp 533– (1996)
[14] Eymard, Handbook of Numerical Analysis VII pp 713– (2000)
[15] Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimates, Mathematical Modelling and Numerical Analysis 33 pp 129– (1999) · Zbl 0921.65071
[16] Cockburn, A posteriori error estimates for general numerical methods for scalar conservation laws, Computational and Applied Mathematics 14 pp 37– (1995) · Zbl 0834.65091
[17] Ohlberger, Error estimate for the approximation of non-linear conservation laws on bounded domains by the finite volume method, Mathematics of Computation 75 pp 113– (2006) · Zbl 1082.65112
[18] Dedner, Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws, SIAM Journal on Numerical Analysis 45 (2) pp 514– (2007) · Zbl 1145.65072
[19] Bouchut, Kruzkov’s estimates for scalar conservation laws revisited, Transactions of the American Mathematical Society 350 (7) pp 2847– (1998) · Zbl 0955.65069
[20] Katsoulakis, Convergence and error estimates of relaxation schemes for multidimensional conservation laws, Communications in Partial Differential Equations 24 (3-4) pp 395– (1999) · Zbl 0926.35088
[21] Szepessy, Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions, RAIRO-Modélisation Mathematique et Analyse Numérique 25 (6) pp 749– (1991)
[22] Benharbit, Numerical viscosity and convergence of finite volume methods for conservation laws with boundary conditions, SIAM Journal on Numerical Analysis 3 pp 775– (1995) · Zbl 0865.35082
[23] Cockburn, Convergence of the finite volume method for multidimensional conservation laws, SIAM Journal on Numerical Analysis 32 (3) pp 687– (1995) · Zbl 0845.65051
[24] Bardos, First order quasilinear equations with boundary conditions, Communications in Partial Differential Equations 4 (9) pp 1017– (1979) · Zbl 0418.35024
[25] Málek, Weak and Measure-valued Solutions to Evolutionary PDEs (1996) · Zbl 0851.35002 · doi:10.1007/978-1-4899-6824-1
[26] Serre, Systèmes de lois de conservation. II (1996) · Zbl 0930.35003
[27] Carrillo, Entropy solutions for nonlinear degenerate problems, Archive for Rational Mechanics and Analysis 147 (4) pp 269– (1999) · Zbl 0935.35056
[28] Vignal MH. Schemas Volumes Finis pour des equations elliptiques ou hyperboliques avec conditions aux limites, convergence et estimations d’erreur. Thesis, L’Ecole Normale Superieure, Lyon, 1997.
[29] Cockburn, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of Scientific Computing 16 (3) pp 173– (2001) · Zbl 1065.76135
[30] Cockburn, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Mathematics of Computation 52 (186) pp 411– (1989)
[31] Zhang, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM Journal on Numerical Analysis 42 (2) pp 641– (2004) · Zbl 1078.65080
[32] Jaffré, Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws, Mathematical Models and Methods in Applied Sciences 5 (3) pp 367– (1995)
[33] Johnson, Adaptive finite element methods for conservation laws based on a posteriori error estimates, Communications on Pure and Applied Mathematics 48 pp 199– (1995) · Zbl 0826.65088
[34] Cockburn, Error estimates for finite element methods for scalar conservation laws, SIAM Journal on Numerical Analysis 33 pp 522– (1996) · Zbl 0861.65077
[35] Dedner, Proceedings of the 11th International Conference on Hyperbolic Problems (2008)
[36] Tang, Recent Advances in Adaptive Computation, Contemporary Mathematics 383 pp 141– (2005) · doi:10.1090/conm/383/07162
[37] DUNE-Distributed and Unified Numerics Environment. http://dune-project.org/.
[38] Bastian P, Droske M, Engwer C, Klöfkorn R, Neubauer T, Ohlberger M, Rumpf M. Towards a unified framework for scientific computing. Proceedings of the 15th International Conference on Domain Decomposition Methods, Berlin, 21-25 July 2003. · Zbl 1067.65103
[39] Leveque, High-resolution conservative algorithms for advection in incompressible flow, SIAM Journal on Numerical Analysis 33 (2) pp 627– (1996) · Zbl 0852.76057
[40] Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics 31 (3) pp 335– (1979) · Zbl 0416.76002
[41] Gosse, Two a posteriori error estimates for one-dimensional scalar conservation laws, SIAM Journal on Numerical Analysis 38 (3) pp 964– (2000) · Zbl 0980.65096
[42] Katsaounis, Finite volume relaxation schemes for multidimensional conservation laws, Mathematics of Computation 70 (234) pp 533– (2001) · Zbl 0967.65094
[43] Küther, Error estimates for the staggered Lax Friedrichs scheme on unstructured grids, SIAM Journal on Numerical Analysis 39 (4) pp 1269– (2001) · Zbl 1020.65061
[44] Küther, Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the 9th International Conference on Hyperbolic Problems (2003)
[45] Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations, SIAM Journal on Numerical Analysis 28 pp 891– (1991) · Zbl 0732.65084
[46] Süli, The State of the Art in Numerical Analysis pp 441– (1997)
[47] Houston, A posteriori error analysis for numerical approximation of Friedrichs system, Numerische Mathematik 82 (3) pp 433– (1999) · Zbl 0935.65096
[48] Warnecke, Adaption and reliability of numerical methods for stiff and nonstiff problems in CFD, Computational Fluid Dynamics 9 (1) (2000)
[49] Jovanović, Finite-volume schemes for Friedrichs systems in multiple space dimensions: a priori and a posteriori error estimates, Numerical Methods for Partial Differential Equations 21 (1) pp 104– (2005) · Zbl 1068.65113
[50] Hartmann, Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws, SIAM Journal on Scientific Computing 24 (3) pp 979– (2002) · Zbl 1034.65081
[51] Larson, Discontinuous Galerkin Methods pp 363– (2000) · doi:10.1007/978-3-642-59721-3_34
[52] Houston, hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems, SIAM Journal on Scientific Computing 23 (4) pp 1226– (2001) · Zbl 1029.65130
[53] Houston, hp-discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity, International Journal for Numerical Methods in Fluids 40 (1-2) pp 153– (2002) · Zbl 1021.76027
[54] Süli, Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics pp 269– (2003) · doi:10.1007/978-3-662-05189-4_6
[55] Adjerid, A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems, Computer Methods in Applied Mechanics and Engineering 191 (11-12) pp 1097– (2002)
[56] Cohen, Fully adaptive multiresolution finite volume schemes for conservation laws, Mathematics of Computation 72 (241) pp 183– (2003) · Zbl 1010.65035
[57] Müller, Adaptive Multiscale Schemes for Conservation Laws (2003) · Zbl 1016.76004 · doi:10.1007/978-3-642-18164-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.