×

Estimating topological entropy from individual orbits. (English) Zbl 1185.37097

Let \(I=[0,1]\) and \(f: I\to I\) be a continuous map. For any finite open cover of \(I\), denote \(\mathcal{N}(\vee_{i=0}^{n-1}f^{-i}\alpha)\) the smallest cardinality of a subcover chosen from the open cover \(\vee_{i=0}^{n-1}f^{-i}\alpha=\{\cap_{i=0}^{n-1}f^{-i}(A_{j_i}) : A_{j_i}\in\alpha\}\), the topological entropy is defined as the non-negative number \[ h(f)=\sup_\alpha\lim_{n\to\infty}\frac{1}{n}\log\mathcal{N}(\vee_{i=0}^{n-1}f^{-i}\alpha). \] On the other hand, with the time series analysis, let \((x_n)^\infty_{n=0}\) be a sequence, and \(\mathcal{A}_n\subset \mathcal{S}_n\) be the subset of permutations with the property that for any \(\pi\in\mathcal{A}_n\), there is \(k\in\mathbb{N}\) such that \(x_{k+\pi(1)}<x_{k+\pi(2)}<\cdots<x_{k+\pi(n)}\). The permutation entropy of the sequence is defined as \[ h^*((x_n)^\infty_{n=0})=\mathop{\lim\sup}_{n\to\infty}\frac{1}{n}\log \sharp\mathcal{A}_n. \] The main result of the paper is that if \(f:I\to I\) is continuous and monotone, then for any \(y\in I\), \[ h^*(Orb(y, f))\leq h(f)=sup_{x\in I}h^*(Orb(x, f)). \] The paper also provides some numerical estimations of the topological entropy. One approach is to choose some \(x_0, x_1, \cdots, x_n\in I\) and estimate the entropy \(h(f)\) from \(\max_{0\leq i\leq n}h^*(Orb(x_i, f))\). The sequence \(S(x, n_0)=(f^n(x))^{n_0}_{n=0}\subset Orb(x, f)\) is selected to numerically compute \(h^*(Orb(x_i, f))\).

MSC:

37E05 Dynamical systems involving maps of the interval
37B40 Topological entropy
26A18 Iteration of real functions in one variable
Full Text: DOI

References:

[1] DOI: 10.1090/S0002-9947-1965-0175106-9 · doi:10.1090/S0002-9947-1965-0175106-9
[2] Alsedá L., Combinatorial Dynamics and Entropy in Dimension One (1993) · Zbl 0843.58034
[3] Aoki N., Topological Theory of Dynamical Systems, Recent Advances (1994) · Zbl 0798.54047
[4] DOI: 10.1103/PhysRevLett.88.174102 · doi:10.1103/PhysRevLett.88.174102
[5] DOI: 10.1088/0951-7715/15/5/312 · Zbl 1026.37027 · doi:10.1088/0951-7715/15/5/312
[6] DOI: 10.1007/BF01055699 · Zbl 0892.58023 · doi:10.1007/BF01055699
[7] DOI: 10.1007/BF01041072 · Zbl 0714.54018 · doi:10.1007/BF01041072
[8] Blokh A., Dynamics Reported 4 (1995)
[9] DOI: 10.1142/S021812749900136X · Zbl 1089.37515 · doi:10.1142/S021812749900136X
[10] DOI: 10.1007/BF01209479 · Zbl 0529.58029 · doi:10.1007/BF01209479
[11] Coven E. M., Acta Math. Univ. Comenian (N.S.) 62 pp 117– (1993)
[12] DOI: 10.1090/S0002-9939-1992-1086325-3 · doi:10.1090/S0002-9939-1992-1086325-3
[13] DOI: 10.1017/S0004972700010157 · Zbl 0577.54041 · doi:10.1017/S0004972700010157
[14] Kolyada S., Grazer Math. Ber. 334 pp 3– (1997)
[15] DOI: 10.1038/261459a0 · Zbl 1369.37088 · doi:10.1038/261459a0
[16] Misiurewicz M., Studia Math. 67 pp 45– (1980)
[17] DOI: 10.1142/9789812567772 · doi:10.1142/9789812567772
[18] DOI: 10.1137/S0036144500376649 · Zbl 1049.37027 · doi:10.1137/S0036144500376649
[19] Walters P., An Introduction to Ergodic Theory (1982) · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.