×

Pointwise limits of Birkhoff integrable functions. (English) Zbl 1185.28018

Let \((\Omega,\Sigma,\mu)\) be a complete finite measure space and \(X\) be a Banach space isomorphic to a closed linear subspace of \(l_{\infty}.\) Let \(f_n:\Omega\rightarrow X\) be a sequence of Birkhoff integrable functions converging pointwise in norm to a function \(f:\Omega\rightarrow X\). In this paper, the author shows (in Corollary 2.9) that \(\{f_n:n\in\mathbb{N}\}\) is equi-Birkhoff integrable if and only if \(f\) is Birkhoff integrable and for each \(A\in\Sigma\), \(\int_Af_nd\mu\rightarrow\int_Afd\mu\) in norm. In order to prove this result, he also proves an interesting “Vitali-type” convergence result (in Theorem 2.8) for the Pettis integral. He has also shown by a counter-example (Example 2.10) that the assumption “\(X\) is isomorphic to a subspace of \(l_\infty\)” made in Corollary 2.9 cannot be dropped. But for arbitrary Banach spaces, the author has proved the following interesting result (in Theorem 2.12) with respect to the weak topology. Let \(f_n:\Omega\rightarrow X\) be a sequence of functions converging pointwise in the weak topology to a function \(f:\Omega\rightarrow X\). If \(\{f_n:n\in\mathbb{N}\}\) is equi-Birkhoff integrable, then \(f\) is Birkhoff integrable and for each \(A\in\Sigma\), \(\int_Af_nd\mu\rightarrow\int_Afd\mu\) weakly.
This paper definitely makes a significant contribution to the modern theory of vector integration, in particular to the theory of the Birkhoff integral.

MSC:

28B05 Vector-valued set functions, measures and integrals
46G10 Vector-valued measures and integration
Full Text: DOI

References:

[1] M. Balcerzak and M. Potyrała, Convergence theorems for the Birkhoff integral, to appear in Czechoslovak Math. J. · Zbl 1174.28011
[2] Robert G. Bartle, A modern theory of integration, Graduate Studies in Mathematics, vol. 32, American Mathematical Society, Providence, RI, 2001. · Zbl 0968.26001
[3] Garrett Birkhoff, Integration of functions with values in a Banach space, Trans. Amer. Math. Soc. 38 (1935), no. 2, 357 – 378. · JFM 61.0234.01
[4] B. Cascales and J. Rodríguez, Birkhoff integral for multi-valued functions, J. Math. Anal. Appl. 297 (2004), no. 2, 540 – 560. Special issue dedicated to John Horváth. · Zbl 1066.46037 · doi:10.1016/j.jmaa.2004.03.026
[5] B. Cascales and J. Rodríguez, The Birkhoff integral and the property of Bourgain, Math. Ann. 331 (2005), no. 2, 259 – 279. · Zbl 1061.28006 · doi:10.1007/s00208-004-0581-7
[6] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. · Zbl 0369.46039
[7] D. H. Fremlin, The McShane and Birkhoff integrals of vector-valued functions, University of Essex Mathematics Department Research Report 92-10, version of 18.05.07 available at http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm. · Zbl 0797.28006
[8] D. H. Fremlin, The generalized McShane integral, Illinois J. Math. 39 (1995), no. 1, 39 – 67. · Zbl 0810.28006
[9] -, Measure theory. Volume 2: Broad foundations, Torres Fremlin, Colchester, 2001.
[10] Russell A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, vol. 4, American Mathematical Society, Providence, RI, 1994. · Zbl 0807.26004
[11] Jaroslav Kurzweil and Štefan Schwabik, McShane equi-integrability and Vitali’s convergence theorem, Math. Bohem. 129 (2004), no. 2, 141 – 157. · Zbl 1051.26012
[12] Kazimierz Musiał, Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste 23 (1991), no. 1, 177 – 262 (1993). School on Measure Theory and Real Analysis (Grado, 1991). · Zbl 0798.46042
[13] Kazimierz Musiał, Pettis integral, Handbook of measure theory, Vol. I, II, North-Holland, Amsterdam, 2002, pp. 531 – 586. · Zbl 1043.28010 · doi:10.1016/B978-044450263-6/50013-0
[14] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277 – 304. · Zbl 0019.41603
[15] Lawrence H. Riddle and Elias Saab, On functions that are universally Pettis integrable, Illinois J. Math. 29 (1985), no. 3, 509 – 531. · Zbl 0576.46034
[16] J. Rodríguez, Convergence theorems for the Birkhoff integral, to appear in Houston J. Math., preprint available at http://personales.upv.es/jorodrui. · Zbl 1175.28008
[17] José Rodríguez, On the existence of Pettis integrable functions which are not Birkhoff integrable, Proc. Amer. Math. Soc. 133 (2005), no. 4, 1157 – 1163. · Zbl 1058.28010
[18] José Rodríguez, Universal Birkhoff integrability in dual Banach spaces, Quaest. Math. 28 (2005), no. 4, 525 – 536. · Zbl 1097.28009 · doi:10.2989/16073600509486145
[19] José Rodríguez, On integration of vector functions with respect to vector measures, Czechoslovak Math. J. 56(131) (2006), no. 3, 805 – 825. · Zbl 1164.28305 · doi:10.1007/s10587-006-0058-9
[20] José Rodríguez, The Bourgain property and convex hulls, Math. Nachr. 280 (2007), no. 11, 1302 – 1309. · Zbl 1129.46036 · doi:10.1002/mana.200510555
[21] José Rodríguez, Spaces of vector functions that are integrable with respect to vector measures, J. Aust. Math. Soc. 82 (2007), no. 1, 85 – 109. · Zbl 1119.28008 · doi:10.1017/S1446788700017481
[22] A. P. Solodov, On the limits of the generalization of the Kolmogorov integral, Mat. Zametki 77 (2005), no. 2, 258 – 272 (Russian, with Russian summary); English transl., Math. Notes 77 (2005), no. 1-2, 232 – 245. · Zbl 1073.28007 · doi:10.1007/s11006-005-0023-1
[23] Michel Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224. · Zbl 0582.46049 · doi:10.1090/memo/0307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.