×

Restrictions on the structure of subgroup lattices of finite alternating and symmetric groups. (English) Zbl 1185.20020

The paper deals with an important and well-known open question: which finite lattices can be represented as intervals in the subgroup lattice of a finite group? In particular the authors exhibit restrictions on the structure of the lattice \(\mathcal O_G(H)\) of subgroups of \(G\) containing \(H\leq G\) when \(G\) is a finite alternating or symmetric group.
For a finite lattice \(L\), let \(L'\) be the poset obtained by removing the minimum and maximum elements of \(L\) and, for \(n\in\mathbb{N}\), let \(\Delta(n)\) be the lattice of all subsets of \(\{1,\dots,n\}\), ordered by inclusion. For positive integers \(m_1,\dots,m_t\), the authors consider the lattice \(D\Delta(m_1,\dots,m_t)\) defined as follows: \(D\Delta(m_1,\dots,m_t)'\) is a disjoint union of posets \(\mathcal C_1,\dots,\mathcal C_t\) with \(C_i\cong\Delta(m_i)'\) for all \(i\) and if \(i\neq j\) then no element of \(C_i\) is comparable to any element of \(C_j\).
The authors prove that if \(t>1\) and \(m_1\geq m_2\geq\cdots\geq m_t\geq 3\), then \(G\in\{\text{Alt}(n),\text{Sym}(n)\}\) contains no subgroup \(H\) with \(\mathcal O_G(H)\cong D\Delta(m_1,\dots,m_t)\).

MSC:

20D30 Series and lattices of subgroups
20B35 Subgroups of symmetric groups
06B15 Representation theory of lattices
08A30 Subalgebras, congruence relations
Full Text: DOI

References:

[1] M. Aschbacher, Overgroups of primitive groups, II, preprint; M. Aschbacher, Overgroups of primitive groups, II, preprint · Zbl 1190.20013
[2] M. Aschbacher, Overgroups of primitive groups, I, J. Austral. Math. Soc., in press; M. Aschbacher, Overgroups of primitive groups, I, J. Austral. Math. Soc., in press · Zbl 1190.20012
[3] Aschbacher, M., On intervals in subgroup lattices of finite groups, J. Amer. Math. Soc., 21, 809-830 (2008) · Zbl 1215.20022
[4] Aschbacher, M., Signalizer lattices for finite groups, Michigan Math. J., 58, 1, 79-103 (2009) · Zbl 1177.20034
[5] Aschbacher, M., Finite Group Theory, Cambridge Stud. Adv. Math., vol. 10 (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0965.20009
[6] Aschbacher, M.; Scott, L., Maximal subgroups of finite groups, J. Algebra, 92, 1, 44-80 (1985) · Zbl 0549.20011
[7] Baddeley, R.; Lucchini, A., On representing finite lattices as intervals in subgroup lattices of finite groups, J. Algebra, 196, 1, 1-100 (1997) · Zbl 0886.20012
[8] Dixon, J.; Mortimer, B., Permutation Groups (1996), Springer: Springer New York · Zbl 0951.20001
[9] Guralnick, R., Subgroups of prime power index in a simple group, J. Algebra, 81, 304-311 (1983) · Zbl 0515.20011
[10] Guralnick, R.; Magaard, K., On the minimal degree of a primitive permutation group, J. Algebra, 207, 127-145 (1998) · Zbl 0911.20003
[11] Jones, W.; Parshall, B., On the 1-cohomology of finite groups of Lie type, (Proceedings of the Conference on Finite Groups. Proceedings of the Conference on Finite Groups, Univ. Utah, Park City, Utah, 1975 (1976), Academic Press: Academic Press New York), 313-328 · Zbl 0345.20046
[12] Liebeck, M. W.; Praeger, C. E.; Saxl, J., A classification of the maximal subgroups of the finite symmetric and alternating groups, J. Algebra, 111, 365-383 (1987) · Zbl 0632.20011
[13] Pálfy, P.; Pudlák, P., Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups, Algebra Universalis, 11, 22-27 (1980) · Zbl 0386.06002
[14] Shareshian, J., Topology of order complexes of intervals in subgroup lattices, J. Algebra, 268, 677-686 (2003) · Zbl 1036.20023
[15] Shareshian, J., On the Möbius number of the subgroup lattice of the symmetric group, J. Combin. Theory Ser. A, 78, 236-267 (1997) · Zbl 0879.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.