×

The Elliott conjecture for Villadsen algebras of the first type. (English) Zbl 1184.46061

The Jiang-Su \(C^*\)-algebra \(\mathcal{Z}\), constructed as a simple unital inductive limit of dimension drop intervals, has the same \(K\)-theory as the complex numbers [X.-H.Jiang and H.-B.Su, “On a simple unital projectionless \(C^*\)-algebra”, Am.J.Math.121, No.2, 359–413 (1999; Zbl 0923.46069)]. A \(C^*\)-algebra \(A\) is said to be \(\mathcal{Z}\)-stable, or to tensorially absorb \(\mathcal{Z}\), when \(A\cong A \otimes \mathcal{Z}\). It is widely agreed [cf., e.g., A.S.Toms and W.Winter, “\(\mathcal{Z}\)-stable ASH algebras”, Can.J.Math.60, No.3, 703–720 (2008; Zbl 1157.46034)] that the largest class for which Elliott’s classification conjecture [G.A.Elliott, “The classification problem for amenable \(C^*\)-algebras”, in Proc.ICM ’94, Zürich, Birkhäuser, 922–932 (1995; Zbl 0946.46050)] can hold consists of \(\mathcal Z\)-stable algebras.
In the paper under review, a broad class \({\mathcal V}\text{I}\) of AH algebras, called Villadsen algebras of the first type, is defined. This includes Villadsen’s example of a simple separable nuclear \(C^*\)-algebra with perforated ordered \(K_0\)-group, Goodearl algebras, as well as many AF algebras, \(A\mathbf{T}\) algebras, and AH algebras of slow dimension growth. All topological spaces involved in the definition of a \({\mathcal V}\text{I}\) AH algebra are certain powers of the same space \(X\), called the seed space of \(A\).
Assuming that such a \(C^*\)-algebra \(A\) is simple with a finite-dimensional CW complex as seed space, the authors prove the equivalence of the following six properties: (i) \(A\) is \(\mathcal{Z}\)-stable; (ii) \(A\) has strict comparison of positive elements; (iii) \(A\) has finite decomposition rank; (iv) \(A\) has slow dimension growth; (v) \(A\) has bounded dimension growth; (vi) \(A\) is approximately divisible.
Furthermore, it is shown that these conditions are fulfilled when \(A\) has real rank zero. Finally, a large family of non-isomorphic simple \({\mathcal V}\text{I}\) algebras is exhibited, with the same topological \(K\)-theory and tracial state space.

MSC:

46L35 Classifications of \(C^*\)-algebras
46L80 \(K\)-theory and operator algebras (including cyclic theory)

References:

[1] Blackadar, B.; Bratteli, O.; Elliott, G. A.; Kumjian, A., Reduction of real rank in inductive limits of \(C^\ast \)-algebras, Math. Ann., 292, 111-126 (1992) · Zbl 0738.46027
[2] Blackadar, B.; Handelman, D., Dimension functions and traces on \(C^\ast \)-algebras, J. Funct. Anal., 45, 297-340 (1982) · Zbl 0513.46047
[3] Blackadar, B.; Kumjian, A.; Rørdam, M., Approximately central matrix units and the structure of noncommutative tori, K-Theory, 6, 267-284 (1992) · Zbl 0813.46064
[4] Bratteli, O., Inductive limits of finite dimensional \(C^\ast \)-algebras, Trans. Amer. Math. Soc., 171, 195-234 (1972) · Zbl 0264.46057
[5] Dadarlat, M., Reduction to dimension three of local spectra of real rank zero \(C^\ast \)-algebras, J. Reine Angew. Math., 460, 189-212 (1995) · Zbl 0815.46065
[6] Elliott, G. A., On the classification of inductive limits of sequences of semi-simple finite-dimensional algebras, J. Algebra, 38, 29-44 (1976) · Zbl 0323.46063
[7] Elliott, G. A., On the classification of \(C^\ast \)-algebras of real rank zero, J. Reine Angew. Math., 443, 179-219 (1993) · Zbl 0809.46067
[8] Elliott, G. A., An invariant for simple \(C^\ast \)-algebras, (Canadian Math. Soc. 1945-1995, vol. 3 (1996), Canadian Math. Soc.: Canadian Math. Soc. Ottawa, ON), 61-90 · Zbl 1206.46046
[9] G.A. Elliott, The classification problem for amenable \(C^{\ast;}\)-algebras, in: Proc. ICM ’94, Zurich, Switzerland, Birkhäuser, Basel, Switzerland, 1995 pp. 922-932; G.A. Elliott, The classification problem for amenable \(C^{\ast;}\)-algebras, in: Proc. ICM ’94, Zurich, Switzerland, Birkhäuser, Basel, Switzerland, 1995 pp. 922-932 · Zbl 0946.46050
[10] Elliott, G. A.; Gong, G., On the classification of \(C^\ast \)-algebras of real rank zero. II, Ann. of Math. (2), 144, 497-610 (1996) · Zbl 0867.46041
[11] Elliott, G. A.; Gong, G.; Li, L., Approximate divisibility of simple inductive limit \(C^\ast \)-algebras, Contemp. Math., 228, 87-97 (1998) · Zbl 0933.46054
[12] Elliott, G. A.; Gong, G.; Li, L., On the classification of simple inductive limit \(C^\ast \)-algebras, II: The isomorphism theorem, Invent. Math., 168, 249-320 (2007) · Zbl 1129.46051
[13] Glimm, J., On a certain class of operator algebras, Trans. Amer. Math. Soc., 95, 318-340 (1960) · Zbl 0094.09701
[14] Gong, G., On inductive limits of matrix algebras over higher-dimensional spaces. I, II, Math. Scand., 80, 41-55 (1997), 56-100 · Zbl 0901.46053
[15] Gong, G., On the classification of simple inductive limit \(C^\ast \)-algebras I. The reduction theorem, Doc. Math., 7, 255-461 (2002) · Zbl 1024.46018
[16] Jiang, X.; Su, H., On a simple unital projectionless \(C^\ast \)-algebra, Amer. J. Math., 121, 359-413 (1999) · Zbl 0923.46069
[17] E. Kirchberg, The classification of Purely Infinite \(C^{\ast;}\)-algebras using Kasparov’s theory, Fields Inst. Commun., in press; E. Kirchberg, The classification of Purely Infinite \(C^{\ast;}\)-algebras using Kasparov’s theory, Fields Inst. Commun., in press
[18] Kirchberg, E.; Winter, W., Covering dimension and quasidiagonality, Internat. J. Math., 15, 63-85 (2004) · Zbl 1065.46053
[19] Lin, H., Classification of simple \(C^\ast \)-algebras with tracial topological rank zero, Duke Math. J., 125, 91-119 (2004) · Zbl 1068.46032
[20] Lin, H., Simple nuclear \(C^\ast \)-algebras of tracial topological rank one, J. Funct. Anal., 251, 601-679 (2007) · Zbl 1206.46052
[21] Phillips, N. C., A classification theorem for nuclear purely infinite simple \(C^\ast \)-algebras, Doc. Math., 5, 49-114 (2000) · Zbl 0943.46037
[22] Rørdam, M., On the structure of simple \(C^\ast \)-algebras tensored with a UHF-algebra, II, J. Funct. Anal., 107, 255-269 (1992) · Zbl 0810.46067
[23] Rørdam, M., Classification of Nuclear \(C^\ast \)-Algebras, Encyclopaedia Math. Sci., vol. 126 (2002), Springer-Verlag: Springer-Verlag Berlin-Heidelberg · Zbl 1016.46037
[24] Rørdam, M., A simple \(C^\ast \)-algebra with a finite and an infinite projection, Acta Math., 191, 109-142 (2003) · Zbl 1072.46036
[25] Rørdam, M., The stable and the real rank of \(Z\)-absorbing \(C^\ast \)-algebras, Internat. J. Math., 15, 1065-1084 (2004) · Zbl 1077.46054
[26] Toms, A. S., On the classification problem for nuclear \(C^\ast \)-algebras, Ann. of Math. (2), 167, 1029-1044 (2008) · Zbl 1181.46047
[27] Toms, A. S., On the independence of K-theory and stable rank for simple \(C^\ast \)-algebras, J. Reine Angew. Math., 578, 185-199 (2005) · Zbl 1073.46045
[28] Toms, A. S., Flat dimension growth for \(C^\ast \)-algebras, J. Funct. Anal., 238, 678-708 (2006) · Zbl 1111.46041
[29] Toms, A. S., Stability in the Cuntz semigroup of a commutative \(C^\ast \)-algebra, Proc. London Math. Soc., 96, 1-25 (2008) · Zbl 1143.46037
[30] A.S. Toms, An infinite family of non-isomorphic \(C^{\ast;}\)-algebras with identical K-theory, preprint, 2006, arXiv: math.OA/0609214, Trans. Amer. Math. Soc., in press; A.S. Toms, An infinite family of non-isomorphic \(C^{\ast;}\)-algebras with identical K-theory, preprint, 2006, arXiv: math.OA/0609214, Trans. Amer. Math. Soc., in press
[31] Toms, A. S.; Winter, W., Strongly self-absorbing \(C^\ast \)-algebras, Trans. Amer. Math. Soc., 359, 3999-4029 (2007) · Zbl 1120.46046
[32] Toms, A. S.; Winter, W., \(Z\)-stable ASH algebras, Canad. J. Math., 60, 703-720 (2008) · Zbl 1157.46034
[33] Villadsen, J., Simple \(C^\ast \)-algebras with perforation, J. Funct. Anal., 154, 110-116 (1998) · Zbl 0915.46047
[34] Villadsen, J., On the stable rank of simple \(C^\ast \)-algebras, J. Amer. Math. Soc., 12, 1091-1102 (1999) · Zbl 0937.46052
[35] Winter, W., Covering dimension for nuclear \(C^\ast \)-algebras, J. Funct. Anal., 199, 535-556 (2003) · Zbl 1026.46049
[36] Winter, W., On topologically finite-dimensional simple \(C^\ast \)-algebras, Math. Ann., 332, 843-878 (2005) · Zbl 1089.46039
[37] Winter, W., On the classification of simple \(Z\)-stable \(C^\ast \)-algebras with real rank zero and finite decomposition rank, J. London Math. Soc., 74, 167-183 (2006) · Zbl 1104.46034
[38] Winter, W., Simple \(C^\ast \)-algebras with locally finite decomposition rank, J. Funct. Anal., 243, 394-425 (2007) · Zbl 1121.46047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.