×

Finite groups with some maximal subgroups of Sylow subgroups \(\mathcal M\)-supplemented. (English. Russian original) Zbl 1184.20016

Math. Notes 86, No. 5, 655-664 (2009); translation from Mat. Zametki 86, No. 5, 692-704 (2009).
Summary: A subgroup \(H\) of a group \(G\) is said to be \(\mathcal M\)-supplemented in \(G\) if there exists a subgroup \(B\) of \(G\) such that \(G=HB\) and \(TB<G\) for every maximal subgroup \(T\) of \(H\). In this paper, we obtain the following statement: Let \(\mathcal F\) be a saturated formation containing all supersolvable groups and \(H\) be a normal subgroup of \(G\) such that \(G/H\in\mathcal F\). Suppose that every maximal subgroup of a noncyclic Sylow subgroup of \(F^*(H)\), having no supersolvable supplement in \(G\), is \(\mathcal M\)-supplemented in \(G\). Then \(G\in\mathcal F\).

MSC:

20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20D40 Products of subgroups of abstract finite groups
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
Full Text: DOI

References:

[1] S. Srinivasan, ”Two sufficient conditions for supersolvability of finite groups,” Israel J. Math. 35(3), 210–214 (1980). · Zbl 0437.20012 · doi:10.1007/BF02761191
[2] M. Asaad, M. Ramadan, and A. Shaalan, ”Influence of {\(\pi\)}-quasinormality on maximal subgroups of Sylow subgroups of the Fitting subgroup of a finite group,” Arch.Math. (Basel) 56(6), 521–527 (1991). · Zbl 0738.20026 · doi:10.1007/BF01246766
[3] M. Asaad, ”On maximal subgroups of Sylow subgroups of finite groups,” Comm. Algebra 26(11), 3647–3652 (1998). · Zbl 0915.20008 · doi:10.1080/00927879808826364
[4] Y. Wang, ”Finite groups with some subgroups of Sylow subgroups c-supplemented,” J. Algebra 224(2), 467–478 (2000). · Zbl 0953.20010 · doi:10.1006/jabr.1999.8079
[5] L. Miao and W. Guo, ”Finite groups with some primary subgroups -s-supplemented,” Comm. Algebra 33(8), 2789–2800 (2005). · Zbl 1084.20014 · doi:10.1081/AGB-200065375
[6] W. Guo, The Theory of Classes of Groups, in Math. Appl. (Kluwer Acad. Publ., Dordrecht, 2000), Vol. 505.
[7] D. J. S. Robinson, A Course in the Theory of Groups, in Grad. Texts in Math. (Springer-Verlag, New York, NY, 1993), Vol. 80.
[8] M. Xu, An Introduction to Finite Groups (Science Press, Beijing, 1999).
[9] A. N. Skiba, ”A note on c-normal subgroups of finite groups,” Algebra Discrete Math., No. 3, 85–95 (2005). · Zbl 1092.20018
[10] B. Huppert, Endliche Gruppen. I, in Grundlehren Math. Wiss. (Springer-Verlag, Berlin, 1967), Vol. 134. · Zbl 0217.07201
[11] F. Gross, ”Conjugacy of odd order Hall subgroups,” Bull. London Math. Soc. 19(4), 311–319 (1987). · Zbl 0616.20007 · doi:10.1112/blms/19.4.311
[12] B. Huppert and N. Blackburn, Finite Groups. III, in Grundlehren Math. Wiss. (Springer-Verlag, Berlin, 1982), Vol. 243. · Zbl 0514.20002
[13] Y. Wang, H. Wei, and Y. Li, ”A generalisation of Kramer’s theorem and its applications,” Bull. Austral. Math. Soc. 65(3), 467–475 (2002). · Zbl 1012.20010 · doi:10.1017/S0004972700020517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.