×

Local geometric Langlands correspondence and affine Kac-Moody algebras. (English) Zbl 1184.17011

Ginzburg, Victor (ed.), Algebraic geometry and number theory. In Honor of Vladimir Drinfeld’s 50th birthday. Basel: Birkhäuser (ISBN 978-0-8176-4471-0/hbk). Progress in Mathematics 253, 69-260 (2006).
Let \(\mathfrak g\) be a simple Lie algebra over \(\mathbb C\) and \(G\) a connected algebraic group with Lie algebra \(\mathfrak g\). The affine Kac-Moody algebra \(\hat{\mathfrak g}\) is the universal central extension of the formal loop algebra \(\mathfrak g((t))\). Representations of \(\hat{\mathfrak g}\) have a parameter, an invariant bilinear form on \(\mathfrak g\), which is called the level. Representations corresponding to the bilinear form which is equal to minus one half of the Killing form are called representations of critical level. Such representations can be realized in spaces of global sections of twisted \(D\)-modules on the quotient of the loop group \(G((t))\) by its “open compact” subgroup \(K\), such as \(G[[t]]\) or the Iwahori subgroup \(I\).
This long paper is the first in a series devoted to the study of the categories of representations of the affine Kac-Moody algebra \(\hat{\mathfrak g}\) of the critical level and \(D\)-modules on \(G((t))/K\) from the point of view of a geometric version of the local Langlands correspondence. What this means is nicely explained in the Introduction.
The paper is divided into five parts. Part I reviews results concerning opers and Miura opers. In Part II the authors discuss various categories of representations of affine Kac-Moody algebras at the critical level. The authors then give more precise formulations of certain conjectural equivalences and the interrelations between them. In particular, they prove one of their main results, Theorem 8.17: The functor \(L\Gamma^{\text{Hecke}}\), restricted to \(D^b(\mathfrak D(\text{Gr}G)^{\text{Hecke}}_{\text{crit}}\text{-mod})\), is fully faithful.
In Part III Wakimoto modules are reviewed. The authors give a definition of Wakimoto modules by means of a kind of semi-infinite induction functor and also describe various important properties of these modules.
In Part IV they prove the Main Theorem 6.9, describing the (bounded) derived category of \(\hat{\mathfrak g}_{\text{crit}}\text{-mod}_{\text{nilp}}\) as follows:
\[ D^b(\hat{\mathfrak g}_{\text{crit}}\text{-mod}_{\text{nilp}})^{I,m}\simeq D^b(\text{QCoh}({\tilde{\check{\mathfrak g}}}/{\check{G}}{\times_{{\check{\mathfrak g}}/{\check{G}}}}{\text{Op}^{\text{nilp}}_{\check{\mathfrak g}}})), \] where \(\tilde{\check{\mathfrak g}}\to{\check{\mathfrak g}}\) is Grothendieck’s alteration. For notations see the original.
Part V is an appendix, most of which is devoted to the formalism of group action on categories.
For the entire collection see [Zbl 1113.00007].

MSC:

17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
11G45 Geometric class field theory
14D20 Algebraic moduli problems, moduli of vector bundles
22E57 Geometric Langlands program: representation-theoretic aspects

References:

[1] S. Arkhipov, A new construction of the semi-infinite BGG resolution, q-alg/9605043, 1996.
[2] A. Arkhipov and R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, math.RT/0201073, 2002. · Zbl 1214.14011
[3] Arkhipov, S.; Bezrukavnikov, R.; Ginzburg, V., Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc., 17, 595-678 (2004) · Zbl 1061.17013 · doi:10.1090/S0894-0347-04-00454-0
[4] Arkhipov, S.; Gaitsgory, D., Differential operators on the loop group via chiral algebras, Internat. Math. Res. Notices, 2002, 4, 165-210 (2002) · Zbl 0997.17016 · doi:10.1155/S1073792802102078
[5] Arkhipov, S.; Gaitsgory, D., Another realization of the category of modules over the small quantum group, Adv. Math., 173, 114-143 (2003) · Zbl 1025.17004 · doi:10.1016/S0001-8708(02)00016-6
[6] Beilinson, A.; Bernstein, J., Localisation de g-modules, C. R. Acad. Sci. Paris Sér. I Math., 292, 15-18 (1981) · Zbl 0476.14019
[7] Beilinson, A.; Drinfeld, V., Chiral Algebras (2004), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1138.17300
[8] Beilinson, A., Tensor products of topological vector spaces, Chiral Algebras (2004), Providence, RI: American Mathematical Society, Providence, RI
[9] A. Beilinson and V. Drinfeld, Quantization of Hitchin’s Integrable System and Hecke Eigensheaves, available online from http://www.math.uchicago.edu/ arinkin/langlands/. · Zbl 0864.14007
[10] A. Beilinson and V. Drinfeld, Opers, math.AG/0501398, 2005.
[11] Beilinson, A.; Ginzburg, V., Wall-crossing functors and D-modules, Representation Theory, 3, 1-31 (1999) · Zbl 0910.05068 · doi:10.1090/S1088-4165-99-00063-1
[12] Bernstein, J., Trace in categories, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, 417-423 (1990), Cambridge, MA: Birkhäuser Boston, Cambridge, MA · Zbl 0747.17007
[13] Bernstein, J.; Luntz, V., Equivariant Sheaves and Functors (1994), Berlin: Springer-Verlag, Berlin · Zbl 0808.14038
[14] R. Bezrukavnikov, unpublished manuscript.
[15] Drinfeld, V., DG quotients of DG categories, J. Algebra, 272, 643-691 (2004) · Zbl 1064.18009 · doi:10.1016/j.jalgebra.2003.05.001
[16] Drinfeld, V.; Etinghof, P.; Retakh, V.; Singer, I., Infinite-dimensional vector bundles in algebraic geometry, The Unity of Mathematics, 263-304 (2005), Cambridge, MA: Birkhäuser Boston, Cambridge, MA
[17] Drinfeld, V.; Sokolov, V., Lie algebras and KdV type equations, J. Soviet Math., 30, 1975-2036 (1985) · Zbl 0578.58040 · doi:10.1007/BF02105860
[18] Eisenbud, D.; Frenkel, E., Appendix to M. MustaţĂ, “Jet schemes of locally complete intersection canonical singularities,”, Invent. Math., 145, 3, 397-424 (2001) · Zbl 1091.14004 · doi:10.1007/s002220100152
[19] Feigin, B., The semi-infinite cohomology of Kac-Moody and Virasoro Lie algebras, Russian Math. Survey, 39, 2, 155-156 (1984) · Zbl 0574.17008 · doi:10.1070/RM1984v039n02ABEH003112
[20] Feigin, B.; Frenkel, E., A family of representations of affine Lie algebras, Russian Math. Survey, 43, 5, 221-222 (1988) · Zbl 0668.17015 · doi:10.1070/RM1988v043n05ABEH001935
[21] Feigin, B.; Frenkel, E., Affine Kac-Moody algebras and semi-infinite flag manifolds, Comm. Math. Phys., 128, 161-189 (1990) · Zbl 0722.17019 · doi:10.1007/BF02097051
[22] Feigin, B.; Frenkel, E.; Tsuchiya, A.; Eguchi, T.; Jimbo, M., Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Infinite Analysis, 197-215 (1992), Singapore: World Scientific, Singapore · Zbl 0925.17022
[23] Frenkel, E., Wakimoto modules, opers and the center at the critical level, Adv. Math., 195, 297-404 (2005) · Zbl 1129.17014 · doi:10.1016/j.aim.2004.08.002
[24] Frenkel, E.; Ben-Zvi, D., Vertex Algebras and Algebraic Curves (2004), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1106.17035
[25] Frenkel, E.; Gaitsgory, D., D-modules on the affine Grassmannian and representations of affine Kac-Moody algebras, Duke Math. J., 125, 279-327 (2004) · Zbl 1107.17013 · doi:10.1215/S0012-7094-04-12524-2
[26] Frenkel, E.; Gaitsgory, D.; Vilonen, K., Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. Math., 153, 699-748 (2001) · Zbl 1070.11050 · doi:10.2307/2661366
[27] Frenkel, E.; Teleman, K., Self-extensions of Verma modules and differential forms on opers, Compositio Math., 142, 477-500 (2006) · Zbl 1162.17314 · doi:10.1112/S0010437X05001958
[28] Gaitsgory, D., Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math., 144, 253-280 (2001) · Zbl 1072.14055 · doi:10.1007/s002220100122
[29] D. Gaitsgory, The notion of category over an algebraic stack, math.AG/0507192, 2005.
[30] D. Gaitsgory, Notes on Bezrukavnikov’s theory, in preparation.
[31] Gorbounov, V.; Malikov, F.; Schechtman, V., On chiral differential operators over homogeneous spaces, Internat. J. Math. Math. Sci., 26, 83-106 (2001) · Zbl 1028.22020 · doi:10.1155/S0161171201020051
[32] Kac, V.; Kazhdan, D., Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. Math., 34, 97-108 (1979) · Zbl 0427.17011 · doi:10.1016/0001-8708(79)90066-5
[33] Kostant, B., Lie group representations on polynomial rings, Amer. J. Math., 85, 327-402 (1963) · Zbl 0124.26802 · doi:10.2307/2373130
[34] Langlands, R. P., Problems in the theory of automorphic forms, Lectures in Modern Analysis and Applications III, 18-61 (1970), Berlin, New York, Heidelberg: Springer-Verlag, Berlin, New York, Heidelberg · Zbl 0225.14022
[35] Laumon, G., Transformation de Fourier, constantes d’équations fonctionelles et conjecture de Weil, Publ. I.H.E.S., 65, 131-210 (1987) · Zbl 0641.14009
[36] Mackenzie, K., Lie Groupoids and Lie Algebroids in Differential Geometry (1987), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0683.53029
[37] I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, math.RT/0401222, 2004. · Zbl 1400.22015
[38] Vogan, D., Local Langlands correspondence, Representation Theory of Groups and Algebras, 305-379 (1993), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0802.22005
[39] Voronov, A., Semi-infinite induction and Wakimoto modules, Amer. J. Math., 121, 1079-1094 (1999) · Zbl 0962.17015 · doi:10.1353/ajm.1999.0037
[40] Wakimoto, M., Fock representations of affine Lie algebra A_1^(1), Comm. Math. Phys., 104, 605-609 (1986) · Zbl 0587.17009 · doi:10.1007/BF01211068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.