×

The magnetoelliptic instability of rotating systems. (English) Zbl 1183.76739

Summary: We address the question of stability of the Euler flow with elliptical streamlines in a rotating frame, interacting with uniform external magnetic field perpendicular to the plane of the flow. Our motivation for this study is of astrophysical nature, since many astrophysical objects, such as stars, planets and accretion discs, are tidally deformed through gravitational interaction with other bodies. Therefore, the ellipticity of the flow models the tidal deformations in the simplest way. The joint effect of the magnetic field and the Coriolis force is studied here numerically and analytically in the limit of small elliptical (tidal) deformations \((\zeta \ll 1)\), using the analytical technique developed by Lebovitz & Zweibel (Astrophys. J., vol. 609, 2004, pp. 301-312). We find that the effect of background rotation and external magnetic field is quite complex. Both factors are responsible for new destabilizing resonances as the vortex departs from axial symmetry \((\zeta \ll 1)\); however, just like in the non-rotating case, there are three principal resonances causing instability in the leading order. The presence of the magnetic field is very likely to destabilize the system with respect to perturbations propagating in the direction of the magnetic field if the basic vorticity and the background rotation have opposite signs (i.e. for anticyclonic background rotation). We present the dependence of the growth rates of the modes on various parameters describing the system, such as the strength of the magnetic field \((h)\), the inverse of the Rossby number \(\mathcal R_v\), the ellipticity of the basic flow \((\epsilon)\) and the direction of propagation of modes \((\vartheta)\). Our analytical predictions agree well with the numerical calculations.

MSC:

76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76E07 Rotation in hydrodynamic stability
76W05 Magnetohydrodynamics and electrohydrodynamics
76U05 General theory of rotating fluids
Full Text: DOI

References:

[1] DOI: 10.1063/1.858733 · Zbl 0791.76030 · doi:10.1063/1.858733
[2] DOI: 10.1063/1.858438 · Zbl 0762.76027 · doi:10.1063/1.858438
[3] DOI: 10.1098/rspa.1986.0060 · Zbl 0605.35008 · doi:10.1098/rspa.1986.0060
[4] DOI: 10.1016/j.crhy.2005.06.003 · doi:10.1016/j.crhy.2005.06.003
[5] Chandrasekhar, Ellipsoidal Figures of Equilibrium (1969)
[6] DOI: 10.1063/1.868586 · doi:10.1063/1.868586
[7] DOI: 10.1016/0031-9201(86)90085-3 · doi:10.1016/0031-9201(86)90085-3
[8] DOI: 10.1016/S0031-9201(98)00143-5 · doi:10.1016/S0031-9201(98)00143-5
[9] Melchior, Structure and Dynamics of the Earth’s Deep Interior pp 1– (1988) · doi:10.1029/GM046p0001
[10] DOI: 10.1080/03091929108219997 · doi:10.1080/03091929108219997
[11] DOI: 10.1017/S0022112097008331 · Zbl 0923.76012 · doi:10.1017/S0022112097008331
[12] DOI: 10.1103/PhysRevLett.57.2160 · doi:10.1103/PhysRevLett.57.2160
[13] DOI: 10.1088/1742-6596/14/1/004 · doi:10.1088/1742-6596/14/1/004
[14] DOI: 10.1086/170270 · doi:10.1086/170270
[15] Le Dizès, J. Fluid Mech. 471 pp 169– (2002)
[16] DOI: 10.1017/S0022112005005185 · Zbl 1080.76017 · doi:10.1017/S0022112005005185
[17] DOI: 10.1038/325421a0 · doi:10.1038/325421a0
[18] DOI: 10.1016/S0997-7546(03)00057-8 · Zbl 1051.76553 · doi:10.1016/S0997-7546(03)00057-8
[19] DOI: 10.1086/420972 · doi:10.1086/420972
[20] DOI: 10.1063/1.870196 · Zbl 1149.76450 · doi:10.1063/1.870196
[21] DOI: 10.1098/rsta.1996.0037 · Zbl 0885.76036 · doi:10.1098/rsta.1996.0037
[22] DOI: 10.1017/S0022112006001674 · Zbl 1100.76023 · doi:10.1017/S0022112006001674
[23] DOI: 10.1063/1.866124 · doi:10.1063/1.866124
[24] DOI: 10.1016/0032-0633(95)00039-8 · doi:10.1016/0032-0633(95)00039-8
[25] DOI: 10.1080/03091920600664695 · Zbl 1206.85003 · doi:10.1080/03091920600664695
[26] DOI: 10.1063/1.857682 · Zbl 0696.76052 · doi:10.1063/1.857682
[27] DOI: 10.1029/98GL00237 · doi:10.1029/98GL00237
[28] DOI: 10.1111/j.1365-246X.1995.tb03516.x · doi:10.1111/j.1365-246X.1995.tb03516.x
[29] DOI: 10.1146/annurev.fluid.34.081701.171829 · doi:10.1146/annurev.fluid.34.081701.171829
[30] DOI: 10.1063/1.1852576 · Zbl 1187.76525 · doi:10.1063/1.1852576
[31] DOI: 10.1017/S0022112094002107 · Zbl 0814.76045 · doi:10.1017/S0022112094002107
[32] DOI: 10.1017/S0022112007005277 · Zbl 1175.76165 · doi:10.1017/S0022112007005277
[33] Kelvin, Philos. Mag. 24 pp 188– (1887) · doi:10.1080/14786448708628078
[34] DOI: 10.1029/JB075i032p06650 · doi:10.1029/JB075i032p06650
[35] DOI: 10.1080/03091929108229133 · doi:10.1080/03091929108229133
[36] DOI: 10.1038/nature05323 · doi:10.1038/nature05323
[37] DOI: 10.1063/1.1575752 · Zbl 1186.76485 · doi:10.1063/1.1575752
[38] DOI: 10.1086/172472 · doi:10.1086/172472
[39] DOI: 10.1146/annurev.fl.24.010192.002331 · doi:10.1146/annurev.fl.24.010192.002331
[40] DOI: 10.1063/1.1686951 · Zbl 1186.76162 · doi:10.1063/1.1686951
[41] DOI: 10.1103/PhysRevLett.57.2157 · doi:10.1103/PhysRevLett.57.2157
[42] DOI: 10.1103/PhysRevLett.85.3400 · doi:10.1103/PhysRevLett.85.3400
[43] DOI: 10.1017/S0022112083000518 · Zbl 0556.76039 · doi:10.1017/S0022112083000518
[44] DOI: 10.1016/0031-9201(91)90011-6 · doi:10.1016/0031-9201(91)90011-6
[45] DOI: 10.1029/2001GL012956 · doi:10.1029/2001GL012956
[46] DOI: 10.1098/rspa.1986.0061 · Zbl 0602.76032 · doi:10.1098/rspa.1986.0061
[47] DOI: 10.1063/1.1570419 · doi:10.1063/1.1570419
[48] DOI: 10.1017/S0022112089000133 · Zbl 0676.76036 · doi:10.1017/S0022112089000133
[49] DOI: 10.1098/rspa.1988.0058 · Zbl 0665.76130 · doi:10.1098/rspa.1988.0058
[50] DOI: 10.1063/1.1399033 · Zbl 1184.76366 · doi:10.1063/1.1399033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.