×

Bounded variation regularization using line sections. (English) Zbl 1183.68688

Summary: Based on a theorem that expresses the Bounded Variation (BV)-norm via the one-dimensional BV-norm restricted to a line, we find a representation of the higher-dimensional Rudin-Osher-Fatemi functional via one-dimensional ones. Moreover, we find a new representation of the dual norm and the dual functional. We use these results to propose optimization algorithms for the ROF-functional-an Uzawa algorithm and a dual projection algorithm-which only use one-dimensional minimization. Furthermore, the dual projection method can be used to find the orientation of textures in images.

MSC:

68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
49M29 Numerical methods involving duality
65K10 Numerical optimization and variational techniques
49Q15 Geometric measure and integration theory, integral and normal currents in optimization

References:

[1] Ambrosio L., Functions of Bounded Variation and Free Discontinuity Problems (2000) · Zbl 0957.49001
[2] Aujol J.-F., CMLA (2008)
[3] Barbu V., Convexity and Optimization in Banach Spaces (1986) · Zbl 0594.49001
[4] Boykov Y., ICCV 03 (2003)
[5] DOI: 10.1023/B:JMIV.0000011320.81911.38 · Zbl 1366.94051 · doi:10.1023/B:JMIV.0000011320.81911.38
[6] DOI: 10.1007/s002110050258 · Zbl 0874.68299 · doi:10.1007/s002110050258
[7] DOI: 10.1137/040615286 · Zbl 1117.94002 · doi:10.1137/040615286
[8] Chan T.F., Image Processing and Analysis. Variational, PDE, Wavelet, and Stochastic Methods (2005) · Zbl 1095.68127
[9] Conway J.B., A Course in Functional Analysis (1985) · Zbl 0558.46001
[10] Darbon J., Combinatorial Image Analysis (2004)
[11] Ekeland I., Convex Analysis and Variational Problems (1976) · Zbl 0322.90046
[12] Federer H., Geometric Measure Theory (1996) · Zbl 0874.49001
[13] DOI: 10.1137/040608982 · Zbl 1094.68108 · doi:10.1137/040608982
[14] Goldstein T., CAM Report (2008)
[15] DOI: 10.1023/A:1026276804745 · Zbl 1101.68927 · doi:10.1023/A:1026276804745
[16] DOI: 10.1137/S0036139902403901 · Zbl 1073.68095 · doi:10.1137/S0036139902403901
[17] DOI: 10.1016/S0362-546X(98)00299-5 · Zbl 0971.49014 · doi:10.1016/S0362-546X(98)00299-5
[18] DOI: 10.1109/MSP.2008.923513 · doi:10.1109/MSP.2008.923513
[19] DOI: 10.1007/s10915-006-9074-z · Zbl 1106.94007 · doi:10.1007/s10915-006-9074-z
[20] Kolmogorov V., ICCV 05 (2005)
[21] Meyer Y., Oscillating Patterns in Image Processing and Nonlinear Evolution Equations (2001) · Zbl 0987.35003 · doi:10.1090/ulect/022
[22] DOI: 10.1002/cpa.3160420503 · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[23] DOI: 10.1137/1.9780898719284 · Zbl 0973.92020 · doi:10.1137/1.9780898719284
[24] DOI: 10.1137/S0036142901389165 · Zbl 1018.49025 · doi:10.1137/S0036142901389165
[25] DOI: 10.1137/040605412 · Zbl 1090.94003 · doi:10.1137/040605412
[26] DOI: 10.1016/0167-2789(92)90242-F · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[27] S. Setzer and G. Steidl ( 2008 ). Split bregman method, gradient descent reprojection method and parseval frames . Preprint , University of Mannheim .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.