×

Qualitative change of fluctuation observed in real traffic flow. (English) Zbl 1183.37136

Summary: We studied the nature of fluctuations around the phase transition of vehicular traffic by analyzing a time series of successive variations of velocity, obtained from single-vehicle data measured by an onboard apparatus. We found that the probability density function calculated from the time series of variation of velocity is transformed irreversibly in the critical region, where a Gaussian distribution changes into a Lévy stable symmetrical distribution. The power-law tail in the Lévy distribution indicated that the time series of velocity variation exhibits the nature of the critical fluctuations generally observed in phase transitions driven far from equilibrium. Furthermore, single-vehicle data enabled us to calculate the time evolution of the local flux-density relation, which suggested that the vehicular traffic system spontaneously approaches a delicate balance between metastable states and congested-flow states. The nature of fluctuations enables us to understand mechanisms behind the spontaneous decay of the metastable branch at the phase transition. The power-law tail in the probability density function suggests that dynamical processes of vehicular traffic in the critical region are related to a time-discrete stochastic process driven by random amplification with additive external noise.

MSC:

37M10 Time series analysis of dynamical systems
90B20 Traffic problems in operations research
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
Full Text: DOI

References:

[1] Gazis, D. C., Science, 157, 273 (1967)
[2] Reiss, H.; Hammerich, A. D.; Montroll, E. W., J. Stat. Phys., 42, 647 (1986)
[3] Chowdhury, D.; Santen, L.; Schadschneider, A., Phys. Rep., 329, 199 (2000)
[4] Helbing, D., Rev. Modern Phys., 73, 1067 (2001)
[5] Koshi, M.; Iwasaki, M.; Ohkura, I., (Hurdle, V. F.; Stewart, G. N., Proc. 8th International Symposium Transportation Traffic Theory (1983), Elsevier: Elsevier Amsterdam, The Netherlands, and Toronto, Ontario, Canada), 403
[6] F.L. Hall, V.F. Hurdle, J.H. Banks, Transportation Research Record 1365, TRB, NRC, Washington, DC, 1992, pp.12-18; F.L. Hall, V.F. Hurdle, J.H. Banks, Transportation Research Record 1365, TRB, NRC, Washington, DC, 1992, pp.12-18
[7] Windover, J. R.; Cassidy, M. J., Transp. Res., 35, 881 (2001)
[8] Treiterer, J.; Myers, J. A., The hysteresis phenomenon in traffic flow, (Buckley, D. J., Proc. 6th ISTT. Proc. 6th ISTT, Sydney, Australia (1974), Elsevier: Elsevier New York), 13
[9] Hall, F. L.; Agyemang-Duah, K., Transp. Res. Rec., 1320, 91 (1991)
[10] Bando, M.; Hasebe, K.; Nakayama, A.; Shibata, A.; Sugiyama, Y., Phys. Rev. E, 51, 1035 (1995)
[11] Kramers, H. A., Physica (Amsterdam), 7, 284 (1940) · Zbl 0061.46405
[12] Haken, H., Rev. Modern Phys., 47, 67-121 (1975)
[13] Mahnke, R.; Kaupužs, J.; Lubashevsky, I., Phys. Rep., 408, 1 (2005)
[14] Lighthill, M. J.; Whitham, G. B., Proc. Roy. Soc. A, 317 (1955) · Zbl 0064.20906
[15] Richards, P. I., Oper. Res., 4, 42 (1956) · Zbl 1414.90094
[16] Prigogine, I.; Herman, R., Kinetic Theory of Vehicular Traffic (1971), Elsevier: Elsevier New York · Zbl 0249.90026
[17] Rothery, R. W., (Gartner, N.; Messner, C. J.; Rathi, A. J., Traffic Flow Theory. Traffic Flow Theory, Transportation Research Board (TRB) Special Report, vol. 165 (1992), Transportation Research Board: Transportation Research Board Washington, DC), (Chapter 4)
[18] Kurtze, D. A.; Hong, D. C., Phys. Rev. E, 52, 218 (1995)
[19] Komatsu, T. S.; Sasa, S. I., Phys. Rev. E, 52, 5574 (1995)
[20] Igarashi, Y.; Itoh, K.; Nakanishi, K.; Ogura, K.; Yokokawa, K., Phys. Rev. Lett.. Phys. Rev. Lett., Phys. Rev. E, 64, 047102 (2001)
[21] Nagatani, T., Phys. Rev. E, 58, 4271 (1998)
[22] Gerlough, D. L.; Huber, M. J., (Traffic Flow Theory. Traffic Flow Theory, Special Report, vol. 165 (1975), Transportation Research Board, National Research Council: Transportation Research Board, National Research Council Washington, DC)
[23] Leutzbach, W., Introduction to the Theory of Traffic Flow (1988), Springer: Springer Berlin, Germany
[24] Neubert, L.; Santen, L.; Schadschneider, A.; Schreckenberg, M., Phys. Rev. E, 60, 6480 (1999)
[25] Jones, T. R.; Potts, R. B., Oper. Res., 10, 745 (1962)
[26] Montroll, E. W.; Potts, R. B., (Car Following and Acceleration Noise. Car Following and Acceleration Noise, An Introduction to Traffic Flow Theory, Special Report, vol. 79 (1964), HRB (Highway Research Board), National Research Council: HRB (Highway Research Board), National Research Council Washington, DC), 37-48, (Chapter 2)
[27] Drew, D. R., Traffic Flow Theory and Control (1968), McGraw-Hill: McGraw-Hill New York
[28] Schadschneider, A., Eur. Phys. J. B, 10, 573 (1999)
[29] Bouchaud, J.-P.; Georges, A., Phys. Rep., 195, 127 (1990)
[30] Shlesinger, M. F.; Zaslavsky, G. M.; Klafter, J., Nature, 363, 31 (1993)
[31] Kesten, H., Acta Math., 131, 207 (1973) · Zbl 0291.60029
[32] de Calan, C.; Luck, J.-H.; Nieuwenhuizen, T. M.; Petritis, D., J. Phys. A, 18, 501 (1985)
[33] Deutsch, J. M., Physica (Amsterdam), 208A, 433 (1994)
[34] Levy, M.; Solomon, S., Int. J. Mod. Phys., 7, 595 (1996)
[35] Takayasu, H.; Sato, A.-H.; Takayasu, M., Phys. Rev. Lett., 79, 966 (1997) · Zbl 0971.82033
[36] Sornette, D., Phys. Rev. E, 57, 4811 (1998)
[37] Engle, R. F., Ecometrica, 50, 987 (1982) · Zbl 0491.62099
[38] Sato, A.; Takayasu, H., Physica A, 250, 231 (1998) · Zbl 0970.91018
[39] Cahn, J. W.; Hilliard, J. E., J. Chem. Phys., 28, 258 (1958) · Zbl 1431.35066
[40] Ginzburg, V. L., Sov. Phys. Solid State, 2, 1824 (1961)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.