×

Further improvement on synchronization stability of complex networks with coupling delays. (English) Zbl 1183.34116

The subject of the paper is the following system of coupled delay differential equations (dynamical network)
\[ \dot u_i = g(u_i) + c \sum_{j=1}^N G_{ij} Au_j(t-\tau),\quad i=1,2,\dots,N, \]
where \(u_i\in \mathbb{R}^n\) \(g:\mathbb{R}^n\to \mathbb{R}^n\) is a continuously differentiable function, \(\tau>0\) is the time delay, \(G=(G_{ij})_{N\times N}\) is the coupling matrix of the network, which contains only 1 or 0 as elements. In addition, the following condition is satisfied
\[ G_{ii}=-\sum_{j=1,j\neq i}^n G_{ij}=-\sum_{j=1,j\neq i}^n G_{ji}, \]
which implies the existence of an invariant subspace of synchronous solutions, on which \(u_1=u_2=\cdots=u_N\).
The main result of this paper gives new conditions for stability of the subspace of synchronous solutions. Methods of the proof are based on a delay fractioning approach and a Lyapunov-Krasovski functional.

MSC:

34K20 Stability theory of functional-differential equations
34K06 Linear functional-differential equations
34K25 Asymptotic theory of functional-differential equations
34D06 Synchronization of solutions to ordinary differential equations
Full Text: DOI

References:

[1] DOI: 10.1016/S0167-2789(03)00174-X · Zbl 1039.94016 · doi:10.1016/S0167-2789(03)00174-X
[2] DOI: 10.1080/00207160412331284105 · Zbl 1066.65160 · doi:10.1080/00207160412331284105
[3] DOI: 10.1016/j.physleta.2005.12.092 · doi:10.1016/j.physleta.2005.12.092
[4] DOI: 10.1109/TCSII.2006.882363 · doi:10.1109/TCSII.2006.882363
[5] DOI: 10.1016/j.physa.2004.01.056 · doi:10.1016/j.physa.2004.01.056
[6] DOI: 10.1109/TAC.2006.890320 · Zbl 1366.39011 · doi:10.1109/TAC.2006.890320
[7] DOI: 10.1016/j.physleta.2006.08.033 · Zbl 1236.34069 · doi:10.1016/j.physleta.2006.08.033
[8] DOI: 10.1109/TSP.2004.827188 · Zbl 1369.93175 · doi:10.1109/TSP.2004.827188
[9] DOI: 10.1007/978-1-4612-0039-0 · doi:10.1007/978-1-4612-0039-0
[10] DOI: 10.1109/TAC.2006.887907 · Zbl 1366.34097 · doi:10.1109/TAC.2006.887907
[11] DOI: 10.1109/TCSI.2006.883876 · Zbl 1374.37128 · doi:10.1109/TCSI.2006.883876
[12] Kolmanovskii V., Introduction to the Theory and Applications of Functional Differential Equations (1999) · Zbl 0917.34001
[13] DOI: 10.1016/j.physa.2004.05.058 · doi:10.1016/j.physa.2004.05.058
[14] DOI: 10.1109/TCSI.2003.818611 · Zbl 1368.37087 · doi:10.1109/TCSI.2003.818611
[15] DOI: 10.1109/TCSII.2005.854315 · doi:10.1109/TCSII.2005.854315
[16] DOI: 10.1109/TAC.2005.849233 · Zbl 1365.93406 · doi:10.1109/TAC.2005.849233
[17] DOI: 10.1103/PhysRevE.68.045104 · doi:10.1103/PhysRevE.68.045104
[18] DOI: 10.1140/epjb/e2004-00112-3 · doi:10.1140/epjb/e2004-00112-3
[19] DOI: 10.1109/81.974874 · Zbl 1368.93576 · doi:10.1109/81.974874
[20] DOI: 10.1109/MCAS.2003.1228503 · doi:10.1109/MCAS.2003.1228503
[21] DOI: 10.1109/78.912924 · doi:10.1109/78.912924
[22] DOI: 10.1109/TNN.2006.872355 · doi:10.1109/TNN.2006.872355
[23] DOI: 10.1016/j.physleta.2005.07.025 · Zbl 1345.92017 · doi:10.1016/j.physleta.2005.07.025
[24] DOI: 10.1109/TAC.2006.880794 · Zbl 1366.90065 · doi:10.1109/TAC.2006.880794
[25] DOI: 10.1016/j.nonrwa.2005.10.004 · Zbl 1122.34065 · doi:10.1016/j.nonrwa.2005.10.004
[26] DOI: 10.1080/00207179608921866 · Zbl 0841.93014 · doi:10.1080/00207179608921866
[27] DOI: 10.1109/TAC.2004.841935 · Zbl 1365.93377 · doi:10.1109/TAC.2004.841935
[28] DOI: 10.1109/TSP.2004.836535 · Zbl 1370.93111 · doi:10.1109/TSP.2004.836535
[29] DOI: 10.1109/TCSI.2005.859050 · Zbl 1374.37056 · doi:10.1109/TCSI.2005.859050
[30] DOI: 10.1109/TAC.2006.872760 · Zbl 1366.93544 · doi:10.1109/TAC.2006.872760
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.