×

Generalized derivations with Engel condition on multilinear polynomials. (English) Zbl 1183.16033

Let \(R\) be a prime ring with right Utumi quotient ring \(U\), extended centroid \(C\), nonzero right ideal \(I\), and nonzero generalized derivation \(D\). For \(x,y\in R\) let \(xy-yx=[x,y]=[x,y]_1\) and for \(k>1\) set \([x,y]_k=[[x,y]_{k-1},y]\).
The main result in the paper assumes that \([D(f(a_1,\dots,a_n)),f(a_1,\dots,a_n)]_k=0\) for a nonzero multilinear \(f(X)\in C\{x_1,\dots,x_n\}\), \(k\geq 1\) fixed, and all \(a_j\in I\). Then either there are \(a\in U\) and \(c\in C\) with \(D(x)=ax\) and \((a-c)I=0\), or else there is \(e^2=e\in\text{soc}(RC)\) so that \(IC=eRC\) and one of the following holds: i) \(f((eRCe)^n)\subseteq eC\) when \(\text{char\,}R=0\); ii) \(\text{char\,}R=p>0\) and some \(f(X)^{p^s}\) has all central values on \(eRCe\), or both \(\text{char\,}R=2\) and \(R\) embeds in \(M_2(F)\) for a field \(F\); iii) there are \(a,b\in U\), \(c\in C\) with \(D(x)=ax-xb\), \((a+b+c)e=0\), and \(f(X)^2\) has all central values on \(eRCe\).

MSC:

16W25 Derivations, actions of Lie algebras
16N60 Prime and semiprime associative rings
16R50 Other kinds of identities (generalized polynomial, rational, involution)
Full Text: DOI

References:

[1] C.L. Chuang, GPIs’ having coefficients in Utumi quotient rings, Proceedings of the American Mathematical Society 103 (1988), 723–728. · Zbl 0656.16006 · doi:10.1090/S0002-9939-1988-0947646-4
[2] C. L. Chuang, On invariant additive subgroups, Israel Journal of Mathematics 57 (1987), 116–128. · Zbl 0618.16002 · doi:10.1007/BF02769465
[3] C. L. Chuang, The additive subgroup generated by a polynomial, Israel Journal of Mathematics 59 (1987), 98–106. · Zbl 0631.16015 · doi:10.1007/BF02779669
[4] C. L. Chuang and T. K. Lee, Rings with annihilator conditions on multilinear polynomials, Chinese Journal of Mathematics 24 (1996), 177–185. · Zbl 0855.16029
[5] C. L. Chuang and C. T. Yeh, Nil polynomials of prime rings, Journal of Algebra 186 (1996), 781–792. · Zbl 0876.16014 · doi:10.1006/jabr.1996.0394
[6] V. De Filippis, An Engel condition with generalized derivations on multilinear polynomials, Israel Journal of Mathematics 162 (2007), 93–108. · Zbl 1142.16023 · doi:10.1007/s11856-007-0090-y
[7] B. Hvala, Generalized derivations in rings, Communications in Algebra 26 (1998), 1147–1166. · Zbl 0899.16018 · doi:10.1080/00927879808826190
[8] N. Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, vol. 37, Providence, 1964. · Zbl 0117.03301
[9] V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic 17 (1978), 155–168. · Zbl 0423.16011 · doi:10.1007/BF01670115
[10] C. Lanski, An Engel condition with derivation for left ideals, Proceedings of the American Mathematical Society 125 (1997), 339–345. · Zbl 0869.16027 · doi:10.1090/S0002-9939-97-03673-3
[11] P. H. Lee and T. K. Lee, Derivations with Engel conditions on multilinear polynomials, Proceedings of the American Mathematical Society 124 (1996), 2625–2629. · Zbl 0859.16031 · doi:10.1090/S0002-9939-96-03351-5
[12] T. K. Lee, Derivations with Engel conditions on polynomials, Algebra Colloquium 5 (1998), 13–24. · Zbl 0915.16029
[13] T. K. Lee, Generalized derivations of left faithful rings, Communications in Algebra 27 (1999), 4057–4073. · Zbl 0946.16026 · doi:10.1080/00927879908826682
[14] T. K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Colloquium 3 (1996), 19–24. · Zbl 0845.16017
[15] T. K. Lee, Semiprime rings with differential identities, Bulletin of the Institute of Mathematics. Academia Sinica 20 (1992), 27–38. · Zbl 0769.16017
[16] T. K. Lee and W. K. Shiue, Identities with generalized derivations, Communications in Algebra 29 (2001), 4437–4450. · Zbl 0992.16018 · doi:10.1081/AGB-100106767
[17] U. Leron, Nil and power central polynomials in rings, Transactions of the American Mathematical Society 202 (1975), 97–103. · Zbl 0297.16010 · doi:10.1090/S0002-9947-1975-0354764-6
[18] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, Journal of Algebra 12 (1969), 576–584. · Zbl 0175.03102 · doi:10.1016/0021-8693(69)90029-5
[19] W. S. Martindale III and C.R. Miers, On the iterates of derivations of prime rings, Pacific Journal of Mathematics 104 (1983), 179–190. · Zbl 0507.16022
[20] E. C. Posner, Derivations in prime rings, Proceedings of the American Mathematical Society 8 (1957), 1093–1100. · Zbl 0082.03003 · doi:10.1090/S0002-9939-1957-0095863-0
[21] L. Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, Vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. · Zbl 0461.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.