×

Advances in automation and control research in China. (English) Zbl 1182.93002

Summary: Automation is the utilization of control techniques together with other information technology to control industrial processes, reducing the need for human intervention. It plays a highly important role in social and economy as well as in daily life. Control theory is the theory of automation, and is an interdisciplinary branch of engineering and mathematics, examining the behavior of dynamical systems. China has a long history of manufacturing automatic devices. In recent years, some rapid progresses in control theory have been made in China. Many new theories and new methodologies have been developed to meet the increasing demands in industry, agriculture, defense, and other social sectors. Contemporary sciences such as complexity, systems biology, quantum technologies, have also found their close links to control theories and technologies. On the other hand, control theory itself has many unsolved fundamental problems requiring further studies and investigation. This paper is to review the development and progress that have been made in all these aspects in China. Some remarks on the future development of control theory are also presented.

MSC:

93A10 General systems
01A65 Development of contemporary mathematics
01A25 History of Chinese mathematics
Full Text: DOI

References:

[1] Chen H F, Cheng D. Early developments of control theory in China. Eur J Control, 2007, 13(1): 25–29 · Zbl 1293.93007 · doi:10.3166/ejc.13.25-29
[2] Wiener N. Cybernetics, or the Control and Communication in the Animal and the Machine. Cambridge: MIT Press, 1948
[3] Maxwell J C. On governors. Proc Royal Society of London, 1868, 16: 270–283 · JFM 01.0337.01 · doi:10.1098/rspl.1867.0055
[4] Tsien H S. Engineering Cybernetics. New York: McGraw-Hill, 1954
[5] Guo L, Huang L, Jin Y. Some recent advances of automatic control in China. In: Proc of 14th IFAC World Congress, Beijing, 1999. 31–48 · Zbl 0973.93002
[6] Cheng D. Control theory. In: 2007–2008 Report on Advances in Control Science and Engineering (in Chinese)(ed. Chinese Association of Science and Technology). Beijing: Chinese Sci. Tech. Press, 2008. 31–40
[7] Tian Y. Stability analysisi and design of the second-order congestion control for networkswith heterogeneous delays. IEEE/ACM Trans Netw, 2005, 13(5): 1082–1093 · doi:10.1109/TNET.2005.857069
[8] Zhao J, Hill D. Dissipativity theory for switched systems. IEEE Trans Automat Contr, 2008, 53(5): 574–578 · Zbl 1367.93452 · doi:10.1109/TAC.2008.920237
[9] Fang H, Ye H, Zhong M. Fault diagnosis of networked control systems. Annu Rev Contr, 2007, 31(1): 55–68 · doi:10.1016/j.arcontrol.2007.01.001
[10] Liu G, Xia Y, Rees D, et al. Design and stability criteria of networked predictive control systems with random network delay in the feedback channel. IEEE Trans Syst Man Cy C, 2007, 37(2): 173–184 · doi:10.1109/TSMCC.2006.886987
[11] Yue D, Hun Q, Chen P. State feedback controller design of networked control systems. IEEE Trans Circ Syst Vid, 2004, 51(11): 640–644 · doi:10.1109/TCSII.2004.836043
[12] Hu S, Zhu Q. Stochastic optimal control and analysis of stability of networked control systems with long delay. Automatica, 2003, 39: 1877–1884 · Zbl 1175.93240 · doi:10.1016/S0005-1098(03)00196-1
[13] Zheng Y, Fang H, Wang H. Takagi-Sugeno fuzzy-model-based fault detection for netwroked control systems with Markov delays. IEEE Trans Syst Man Cy B, 2006, 36(4): 924–929 · doi:10.1109/TSMCB.2005.861879
[14] Wu Y, Hu D, Hu X, et al. Observability analysis of rotation estimation by fusing inertial and line-based visual information: A revisit. Automatica, 2006, 42(10): 1809–1812 · Zbl 1114.93023 · doi:10.1016/j.automatica.2006.05.005
[15] Zhu X, Dong G, Hu D. Unified nonsingular tracking and stabilization controller design for unicycle type wheeled monile robots. Adv Robotics, 2007, 21(5): 711–728 · doi:10.1163/156855307780108196
[16] Ma X, Li X, Qiao H. Fuzzy neural network-based real-time selfreaction of mobile robot in unknown environments. Mechatronics, 2001, 11(8): 1037–1052 · doi:10.1016/S0957-4158(00)00061-1
[17] Wu Y, Hu X, Hu D, et al. Strapdown inertial navigation system algorithms based on dual quaternions. IEEE Trans Aero Elec Syst, 2005, 41(1): 110–132 · doi:10.1109/TAES.2005.1413751
[18] Ning X, Fang J. An automonous celestial navigation method for LEO satellite based on unscented Kalman filter and information fusion. Aerospace Sci Tech, 2007, 11(3): 222–228 · Zbl 1195.70040 · doi:10.1016/j.ast.2006.12.003
[19] Ali J, Fang J. SINS/ANS integration for augmented prerformance navigation solution using unscented Kalman filtering. Aerospace Sci Tech, 2006, 10(3): 233–238 · Zbl 1195.70044 · doi:10.1016/j.ast.2005.11.009
[20] Yang Y, Shi Z, Guan Z, et al. Application of geomagnetic field in naviggation and localization system (in Chinese). J Chin Inert Tech, 2007, 15(6): 686–692
[21] Xu Z, Kei Y, Ning S, et al. Situation and development of marine gravity aided navigation system (in Chinese). Prog Geoph, 2007, 22(1): 104–111
[22] Yie X, Yuan J. H sub-optimal filter for low-cost integrated navigation system. Chinese J Aeronau, 2004, 17(4): 360–368
[23] Song J. Model reference variable structure autopilot design for homing missile systems. J Beijing Inst Tech, 2001, 10(4): 364–369
[24] Yao Y, Yang B, He F, et al. Attitude control of missile via Fliess expansion. IEEE Trans Contr Syst Tech, 2008, 16(5): 959–970 · doi:10.1109/TCST.2007.916352
[25] Wu H, Hu J, Xie Y. Characteristic model-based all-coefficients and adaptive control method and its applications. IEEE Trans Syst Man Cy, 2007, 37: 213–221 · doi:10.1109/TSMCC.2006.887004
[26] Su H, Zhang Q. Comuter integrated process systems and their applications. In: Report on Advances in Control Science and Engineering (in Chinese) (ed. Chinese Association of Science and Technology). Beijing: Chinese Sci. Tech. Press, 2008. 41–50
[27] Zhao Q, Sun K, Zheng D, et al. A study of system splitting strategies for island operation of power systems: A towphase method based on OBDDs. IEEE Trans Power Syst, 2005, 18(4): 1556–1565 · doi:10.1109/TPWRS.2003.818747
[28] Cheng D, Astolfi A, Ortega R. On feedback equivalence to port controlled Hamiltonian systems. Syst Contr Lett, 2005, 54(9): 911–917 · Zbl 1129.93396 · doi:10.1016/j.sysconle.2005.02.005
[29] Wang Y, Feng G, Cheng D, et al. Adaptive L 2 disturbance attenuation control of multi-machine power systems with SMES units. Automatica, 2006, 42(7): 1121–1132 · Zbl 1134.93388 · doi:10.1016/j.automatica.2006.03.014
[30] Wang Y, Feng G, Cheng D. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica, 2007, 43(3): 403–415 · Zbl 1137.93354 · doi:10.1016/j.automatica.2006.09.008
[31] Zhang Y, Li S. Networked model predictive control based on neighborhood optimization for serially connected large-scale processes. J Process Contr, 2007, 27(1): 37–50 · doi:10.1016/j.jprocont.2006.08.009
[32] Li S, Liu H. A new coordinated control strategy for boilerturbine system of coal-fired power plant. IEEE Trans Contr Syst Tech, 2005, 13(6): 943–954 · doi:10.1109/TCST.2005.854319
[33] Ying S, Chen Z, Yuan Z. New chaotic PSO-based neural network predictive control for nonlinear process. IEEE Trans Neural Netw, 2007, 18(2): 595–600 · doi:10.1109/TNN.2006.890809
[34] Xu X, Hu D, Lu X. Kernel-based least-squares policy iteration for reinforcement learning. IEEE Trans Neural Netw, 2007, 18(4): 973–992 · doi:10.1109/TNN.2007.899161
[35] Mao J, Zhang J, Yue Y, et al. Adaptive-tree-structure-based Fuzzy inference system. IEEE Trans Fuzzy Syst, 2005, 13(1): 1–12 · doi:10.1109/TFUZZ.2004.839652
[36] Han J. Active Disturbance Rejection Control Technique–the Technique for Estimating and Compensating the Uncertainties (in Chinese). Beijing: National Defense Industry Press, 2008
[37] Huang Y, Han J. A new synthesis method for uncertain systems-the self-stable region approach. Int J Syst Contr, 1999, 30(1): 33–38 · Zbl 1065.93544
[38] Wu M, He Y, She J, et al. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica, 2004, 40(8): 1435–1439 · Zbl 1059.93108 · doi:10.1016/j.automatica.2004.03.004
[39] Jia Y. Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion. IEEE Trans Contr Syst Tech, 2000, 8(3): 554–569 · doi:10.1109/87.845885
[40] Jia Y. Alternative proofs for improved LMI Representations for the analysis and the design of continuous-tiem systems with polytopic type uncertainty: A predictive approach. IEEE Trans Automat Contr, 2003, 48(8): 1413–1416 · Zbl 1364.93188 · doi:10.1109/TAC.2003.815033
[41] Wu Y Q, Yu X H, Feng C B. Variable structure control for MRAC system with perturbations in input and output channels. Sci China Ser E-Tech Sci, 2000, 43(4): 430–448 · Zbl 0973.93024 · doi:10.1007/BF02916991
[42] Hong Y, Jiang Z. Finite-time stabilization of nonlinear systems with dynamic and parametric uncertainties. IEEE Trans Automat Contr, 2006, 51(12): 1950–1956 · Zbl 1366.93577 · doi:10.1109/TAC.2006.886515
[43] Hong S, Wang L, Chu T. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Physica D, 2006, 213(1): 51–65 · Zbl 1104.34030 · doi:10.1016/j.physd.2005.11.005
[44] Hong Y, Gao L, Cheng D, et al. Lyapunov-based approach of multi-agent systems with switching jointly connected interconnection. IEEE Trans Automat Contr, 2007, 52(5): 943–948 · Zbl 1366.93437 · doi:10.1109/TAC.2007.895860
[45] Chu T, Wang L, Chen T, et al. Self-organized motion in a class of anisotropic swarms: convergence vs oscillation. Chaos Soliton Fract, 2006, 30(4): 875–885 · Zbl 1142.34346 · doi:10.1016/j.chaos.2005.08.133
[46] Cheng D, Wang J, Hu X. An extension of LaSalle’s invariance principle and its application to multi-agent consensus. IEEE Trans Automat Contr, 2008, 53(7): 1765–1770 · Zbl 1367.93427 · doi:10.1109/TAC.2008.928332
[47] Tang G, Guo L. Convergence of a class of multi-agent systems in probabilistic framework. J Syst Sci Comp, 2007, 20(2): 173–197 · Zbl 1130.68088 · doi:10.1007/s11424-007-9016-3
[48] Han J, Li M, Guo L. Soft control on collective behavior of a group of autonomous agents by a shill agent. J Syst Sci Comp, 2006, 19: 54–62 · doi:10.1007/s11424-006-0054-z
[49] Cheng D, Guo L, Huang J. On quadratic Lyapunov function. IEEE Trans Automat Contr, 2003, 48(5): 885–890 · Zbl 1364.93557 · doi:10.1109/TAC.2003.811274
[50] Sun Z, Ge S S, Lee T H. Reachability and controllability criteria for switched linear systems. Automatica, 2002, 38(5): 775–786 · Zbl 1031.93041 · doi:10.1016/S0005-1098(01)00267-9
[51] Cheng D. Controllability of switched bilinear systems. IEEE Trans Automat Contr, 2005, 50(4): 511–515 · Zbl 1365.93039 · doi:10.1109/TAC.2005.844897
[52] Cheng D. Stabilization of planar switching systems. Syst Contr Lett, 2004, 51(2): 79–88 · Zbl 1157.93482 · doi:10.1016/S0167-6911(03)00208-1
[53] Meng B, Zhang J. Reachability conditions for switched linear singular systems. IEEE Trans Automat Contr, 2006, 51(3): 482–488 · Zbl 1366.93059 · doi:10.1109/TAC.2005.864196
[54] Tan S, Zhang J, Yao L. Optimality analysis of adaptive sampled control of hybrid systems with quadratic index. IEEE Trans Automat Contr, 2005, 50(7): 1044–1051 · Zbl 1365.93245 · doi:10.1109/TAC.2005.851456
[55] Wang J, Cheng D, Hu X. Consensus of multi-agent linear dynamic systems. Asian J Contr, 2008, 10(2): 144–155 · doi:10.1002/asjc.15
[56] Kitano H. Foundations of Systems Biology. Cambridge: MIT Press, 2001
[57] Zhang X. Bioinformatics. In: Report on Advances in Control Science and Engineering (ed. Chinese Association of Science and Technology). Beijing: Chinese Sci. Tech. Pub., 2008. 145–153
[58] Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467 · doi:10.1016/0022-5193(69)90015-0
[59] Cheng D, Qi H. Controllability and observability of Boolean control networks. Automatica, 2009, 45(7): 1659–1667 · Zbl 1184.93014 · doi:10.1016/j.automatica.2009.03.006
[60] Tarn T J, Huang G, Clark J W. Modelling of quantum mechanical contol systems. J Math Model, 1980, 1: 109–121 · Zbl 0536.93001 · doi:10.1016/0270-0255(80)90011-1
[61] Xi Z, Jin G. Performance comparison between classical and quantum control for a simple quantum system. Physica A, 2008, 387(4): 1056–1062 · doi:10.1016/j.physa.2007.10.019
[62] Cui W, Xi Z, Pan Y. Optimal decoherence control in non-Markovian open dissipative quantum systems. Phys Rev A, 2008, 77(3): 032117 · doi:10.1103/PhysRevA.77.032117
[63] Cui W, Xi Z, Pan Y. The entanglement dynamics of bipartite quantum system: towards entanglement sudden death. J Phys A: Math Theor, 2009, 42: 025303 · Zbl 1156.81335 · doi:10.1088/1751-8113/42/2/025303
[64] Qi B, Guo L. Comparisons between quantum open-loop control and closed-loop control. In: Proc 27th Chinese Contr Conf, Kunming, 2008, 7: 393–397
[65] Xi Z, Jin G. Classical and quantum control of a simple quantum system. Int J Quantum Inf, 2008, 5(6): 857–884 · Zbl 1200.81033 · doi:10.1142/S0219749907003316
[66] Xie L, Guo L. How much uncertainty can be dealt with by feedback. IEEE Trans Automat Contr, 2000, 45(12): 2203–2217 · Zbl 0989.93052 · doi:10.1109/9.895559
[67] Zhang Y, Guo L. A limit to the capability of feedback. IEEE Trans Automat Contr, 2002, 47(4): 687–692 · Zbl 1364.93308 · doi:10.1109/9.995051
[68] Guo L. Exploring the maximum capability of adaptive feedback. Int J Adapt Contr Signal Proc, 2002, 16: 341–354 · Zbl 1048.93056 · doi:10.1002/acs.713
[69] Duan Z, Wang J, Huang L. Input and output coupled nonlinear systems. IEEE Trans Circ Syst, 2005, 52(3): 567–575 · Zbl 1374.93164 · doi:10.1109/TCSI.2004.842873
[70] Wang J, Duan Z, Huang L. Control of a class of perdulumlike system with Lagrange stability. Automatica, 2006, 41: 145–150 · Zbl 1121.93058
[71] Yang X, Li Q. Chaos generator via wire-bridge oscillator. Electr Lett, 2002, 38: 623–625 · doi:10.1049/el:20020456
[72] Guan X, Feng G, Chen C. A stabilization method of chaotic systems based on full delayed feedback controller design. Phys Lett A, 2006, 348: 210–221 · Zbl 1195.37022 · doi:10.1016/j.physleta.2005.08.061
[73] Lu J, Yu S, Leung H, et al. Experimental verification of multidirectional multi-scroll chaotic attractors. IEEE Trans Circ Syst, 2006, 53(1): 148–165 · doi:10.1109/TCSII.2005.853965
[74] Chen H F. Strong consistency of recursive identification for Hammerstein systems with piecewise-linear memoryless block. IEEE Trans Automa Contr, 2005, 50(10): 1612–1617 · Zbl 1365.93101 · doi:10.1109/TAC.2005.856658
[75] Chen H F. Recursive identification for Wiener model with discontinuous piece-wise linear function. IEEE Trans Automat Contr, 2006, 51(3): 390–400 · Zbl 1366.93670 · doi:10.1109/TAC.2005.864183
[76] Chen H F, Cao X, Fang H, et al. Nonlinear adaptive blind whitening for MIMO channels. IEEE Trans Signal Proc, 2005, 53(8): 2635–2647 · Zbl 1370.94086 · doi:10.1109/TSP.2005.850338
[77] Wang L, Yin G, Zhang J. Joint identification of plant rational models and noise distribution functions using binary-valued observations. Automatica, 2006, 42(4): 535–547 · Zbl 1103.93024 · doi:10.1016/j.automatica.2005.12.004
[78] Zhou T, Feng C. Uniform sample generations from contractive block Toeplitz matrices. IEEE Trans Automat Contr, 2006, 52(9): 1559–1565 · Zbl 1366.93146 · doi:10.1109/TAC.2006.880810
[79] Zhou T. Frequency response estimation for NCFs of an MIMO plant from closed-loop time-domain experimental data. IEEE Trans Automat Contr, 2006, 51(1): 38–51 · Zbl 1366.93649 · doi:10.1109/TAC.2005.860279
[80] Zhou T. Estimation of 1/f signals on the basis of curve fitting. IEEE Trans Signal Proc, 2000, 48(3): 617–628 · doi:10.1109/78.824658
[81] Sun Z, Ge S S, Huo W, et al. Stabilization of nonholonomic chained systems via nonregular feedback linearization. Syst Contr Lett, 2001, 44(4): 279–289 · Zbl 0986.93016 · doi:10.1016/S0167-6911(01)00148-7
[82] Cheng D, Hu X, Wang Y. Non-regular feedback linearization of nonlinear systems via a normal form algorithm. Automatica, 2004, 40(3): 439–447 · Zbl 1039.93007 · doi:10.1016/j.automatica.2003.10.014
[83] Sun Y, Guo L. On controllability of some classes of affine nonlinear systems. In: Glas T, Hendeby G, eds. Forever Ljung in System Identification, Lund, Sweden: Studentlitteratur, 2006. 127–146
[84] Cheng D, Martin C. Stabilization of nonlinear systems via designed center manifold. IEEE Trans Automat Contr, 2001, 46(9): 1372–1383 · Zbl 1012.93052 · doi:10.1109/9.948465
[85] Yao P. On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J Control Optim, 1999, 37(5): 1568–1599 · Zbl 0951.35069 · doi:10.1137/S0363012997331482
[86] Yao P. Observability inequalities for shallow shells. SIAM J Control Optim, 2000, 38(6): 1729–1756 · Zbl 0974.35013 · doi:10.1137/S0363012999338692
[87] Zhang X, Zuazua E. Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system. J Diff Eqn, 2004, 204: 380–438 · Zbl 1064.93008 · doi:10.1016/j.jde.2004.02.004
[88] Guo B, Zhang X. The regularity of the wave equation with partial Dirichlet control and collocated observation. SIAM J Contr Opt, 2005, 44(5): 1598–1613 · Zbl 1134.35318 · doi:10.1137/040610702
[89] Guo B, Wang J. Riesz basis generation of an abstract secondorder partial differential equation system with general nonseparaed boundary conditions. Numer Func Anal Opt, 2006, 24(3): 291–328 · Zbl 1137.35344 · doi:10.1080/01630560600657265
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.