×

Soliton solutions for quasilinear Schrödinger equations with critical growth. (English) Zbl 1182.35205

Summary: We establish the existence of standing wave solutions for quasilinear Schrödinger equations involving critical growth. By using a change of variables, the quasilinear equations are reduced to semilinear one, whose associated functionals are well defined in the usual Sobolev space and satisfy the geometric conditions of the mountain pass theorem. Using this fact, we obtain a Cerami sequence converging weakly to a solution \(v\). In the proof that \(v\) is nontrivial, the main tool is the concentration-compactness principle due to P.L. Lions together with some classical arguments used by H. Brézis and L. Nirenberg [Commun. Pure Appl. Math. 36, 437–477 (1983; Zbl 0541.35029)].

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J60 Nonlinear elliptic equations
35B33 Critical exponents in context of PDEs
35C08 Soliton solutions

Citations:

Zbl 0541.35029

References:

[1] Alves, M. J.; Carrião, P. C.; Miyagaki, O. H., Soliton solutions to a class of quasilinear elliptic equations on \(R\), Adv. Nonlinear Stud., 7, 579-598 (2007) · Zbl 1132.35351
[2] Ambrosetti, A.; Wang, Z.-Q., Positive solutions to a class of quasilinear elliptic equations on \(R\), Discrete Contin. Dyn. Syst., 9, 55-68 (2003) · Zbl 1023.35033
[3] Bass, F.; Nasanov, N. N., Nonlinear electromagnetic spin waves, Phys. Rep., 189, 165-223 (1990)
[4] Benci, V.; Cerami, G., Existence of positive solutions of the equation \(- \Delta u + a(x) u = u^{(N + 2) /(N - 2)}\) in \(R^N\), J. Funct. Anal., 88, 90-117 (1990) · Zbl 0705.35042
[5] Berestycki, H.; Gallouët, T.; Kavian, O., Equations de Champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Sér. I Math., 297, 307-310 (1983) · Zbl 0544.35042
[6] Berestycki, H.; Lions, P. L., Nonlinear scalar field equations I: existence of a ground state, Arch. Ration. Mech. Anal., 82, 313-346 (1983) · Zbl 0533.35029
[7] Borovskii, A.; Galkin, A., Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77, 562-573 (1983)
[8] Brandi, H.; Manus, C.; Mainfray, G.; Lehner, T.; Bonnaud, G., Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5, 3539-3550 (1993)
[9] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 437-477 (1983) · Zbl 0541.35029
[10] Chen, J.; Guo, B., Multiple nodal bound states for a quasilinear Schrödinger equation, J. Math. Phys., 46, 123502 (2005), (11 pp.) · Zbl 1111.34017
[11] Chen, X. L.; Sudan, R. N., Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse, Phys. Rev. Lett., 70, 2082-2085 (1993)
[12] Colin, M.; Jeanjean, L., Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56, 213-226 (2004) · Zbl 1035.35038
[13] De Bouard, A.; Hayashi, N.; Saut, J., Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189, 73-105 (1997) · Zbl 0948.81025
[14] do Ó, J. M.; Miyagaki, O.; Soares, S., Soliton solutions for quasilinear Schrödinger equations: the critical exponential case, Nonlinear Anal., 67, 3357-3372 (2007) · Zbl 1151.35016
[15] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 397-408 (1986) · Zbl 0613.35076
[16] García Azorero, J.; Peral, I., Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, Trans. Amer. Math. Soc., 323, 877-895 (1991) · Zbl 0729.35051
[17] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equation of Second Order (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0691.35001
[18] Hasse, R. W., A general method for the solution of nonlinear soliton and kink Schrödinger equation, Z. Phys. B, 37, 83-87 (1980)
[19] Jeanjean, L.; Tanaka, K., A remark on least energy solutions in \(R^N\), Proc. Amer. Math. Soc., 131, 2399-2408 (2003) · Zbl 1094.35049
[20] Kavian, O., Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Math. Appl., vol. 13 (1993), Springer-Verlag: Springer-Verlag Paris · Zbl 0797.58005
[21] Kosevich, A. M.; Ivanov, B. A.; Kovalev, A. S., Magnetic solitons in superfluid films, J. Phys. Soc. Japan, 50, 3262-3267 (1981)
[22] Kurihura, S., Large-amplitude quasi-solitons in superfluids films, J. Phys. Soc. Japan, 50, 3262-3267 (1981)
[23] Laedke, E.; Spatschek, K.; Stenflo, L., Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24, 2764-2769 (1963) · Zbl 0548.35101
[24] Lions, P. L., The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 223-283 (1984) · Zbl 0704.49004
[25] Liu, J.; Wang, Z.-Q., Soliton solutions for quasilinear Schrödinger equations, I, Proc. Amer. Math. Soc., 131, 441-448 (2003) · Zbl 1229.35269
[26] Liu, J.; Wang, Y.; Wang, Z.-Q., Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29, 879-901 (2004) · Zbl 1140.35399
[27] Liu, J.; Wang, Y.; Wang, Z.-Q., Soliton solutions for quasilinear Schrödinger equations, II, J. Differential Equations, 187, 473-493 (2003) · Zbl 1229.35268
[28] Makhankov, V. G.; Fedyanin, V. K., Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104, 1-86 (1984)
[29] Miyagaki, O. H., On a class of semilinear elliptic problems in \(R^N\) with critical growth, Nonlinear Anal., 29, 773-781 (1997) · Zbl 0877.35043
[30] Moameni, A., Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in \(R^N\), J. Differential Equations, 229, 570-587 (2006) · Zbl 1131.35080
[31] Noussair, E. S.; Swanson, C. A.; Yang, J. F., Quasilinear elliptic problems with critical exponents, Nonlinear Anal., 20, 285-301 (1993) · Zbl 0785.35042
[32] Poppenberg, M.; Schmitt, K.; Wang, Z.-Q., On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14, 329-344 (2002) · Zbl 1052.35060
[33] Pucci, P.; Serrin, J., A general variational identity, Indiana Univ. Math. J., 35, 681-703 (1986) · Zbl 0625.35027
[34] Quispel, G. R.W.; Capel, H. W., Equation of motion for the Heisenberg spin chain, Phys. A, 110, 1-2, 41-80 (1982)
[35] Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 272-291 (1992) · Zbl 0763.35087
[36] Ritchie, B., Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50, 687-689 (1994)
[37] Schechter, M., Linking Methods in Critical Point Theory (1999), Birkhäuser: Birkhäuser Boston · Zbl 0915.35001
[38] Strauss, W. A., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, 149-162 (1977) · Zbl 0356.35028
[39] Struwe, M., Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0939.49001
[40] Takeno, S.; Homma, S., Classical planar Heinsenberg ferromagnet, complex scalar fields and nonlinear excitations, Progr. Theoret. Phys., 65, 172-189 (1981)
[41] Willem, M., Minimax theorems, (Progr. Nonlinear Differential Equations Appl., vol. 24 (1996), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA) · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.