×

Pontryagin’s theorem and spectral stability analysis of solitons. (English. Russian original) Zbl 1182.35192

Math. Notes 86, No. 5, 612-624 (2009); translation from Mat. Zametki 86, No. 5, 643-658 (2009).
Summary: The main result of the present paper is the use of Pontryagin’s theorem for proving a criterion, based on the difference in the number of negative eigenvalues between two self-adjoint operators \(L_{-}\) and \(L_{+}\), for the linear part of a Hamiltonian system to have eigenvalues with strictly positive real part (unstable eigenvalues).

MSC:

35Q51 Soliton equations
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35B35 Stability in context of PDEs
35C08 Soliton solutions
Full Text: DOI

References:

[1] A. T. Il’ichev and A. Yu. Semenov, ”Stability of solitary waves in dispersive media described by a fifth-order evolution equation,” Theor. Comp. Fluid Dyn. 3(6), 307–326 (1992). · Zbl 0755.76022 · doi:10.1007/BF00417931
[2] F. Dias and E. A. Kuznetsov, ”On the nonlinear stability of solitary wave solutions of the fifth-order Korteweg-de Vries equation,” Phys. Lett. A 263(1–2), 98–104 (1999). · Zbl 0938.35163 · doi:10.1016/S0375-9601(99)00712-4
[3] D. E. Pelinovsky and J. Yang, ”Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations,” Stud. Appl.Math. 115(1), 109–137 (2005). · Zbl 1145.35461 · doi:10.1111/j.1467-9590.2005.01565
[4] G. Perelman, ”Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations,” Comm. Partial Differential Equations 29(7–8), 1051–1095 (2004). · Zbl 1067.35113 · doi:10.1081/PDE-200033754
[5] B. Sandstede, ”Stability of multiple-pulse solutions,” Trans. Amer.Math. Soc. 350(2), 429–472 (1998). · Zbl 0887.35020 · doi:10.1090/S0002-9947-98-01673-0
[6] Y. Kodama and D. Pelinovsky, ”Spectral stability and time evolution of N-solitons in the KdV hierarchy,” J. Phys. A.Math. Gen. 38(27), 6129–6140 (2005). · Zbl 1080.35120 · doi:10.1088/0305-4470/38/27/003
[7] M. Grillakis, J. Shatah, and W. Strauss, ”Stability theory of solitary waves in the presence of symmetry. I,” J. Funct. Anal. 74(1), 160–197 (1987). · Zbl 0656.35122 · doi:10.1016/0022-1236(87)90044-9
[8] M. Grillakis, J. Shatah, and W. Strauss, ”Stability theory of solitary waves in the presence of symmetry. II,” J. Funct. Anal. 94(2), 308–348 (1990). · Zbl 0711.58013 · doi:10.1016/0022-1236(90)90016-E
[9] M. Chugunova and D. Pelinovsky, ”Block-diagonalization of the symmetric first-order coupled-mode system,” SIAMJ.Appl. Dyn. Syst. 5(1), 66–83 (2006). · Zbl 1102.35062 · doi:10.1137/050629781
[10] M. Grillakis, ”Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system,” Comm. Pure Appl.Math. 43(3), 299–333 (1990). · Zbl 0731.35010 · doi:10.1002/cpa.3160430302
[11] C. K. R. T. Jones, ”An instabilitymechanism for radially symmetric standing waves of a nonlinear Schrödinger equation,” J. Differential Equations 71(1), 34–62 (1988). · Zbl 0656.35108 · doi:10.1016/0022-0396(88)90037-X
[12] M. Grillakis, ”Linearized instability for nonlinear Schrödinger and Klein-Gordon equations,” Comm. Pure Appl.Math. 41(6), 747–774 (1988). · Zbl 0632.70015 · doi:10.1002/cpa.3160410602
[13] D. E. Pelinovsky, ”Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2055), 783–812 (2005). · Zbl 1145.37333 · doi:10.1098/rspa.2004.1345
[14] S. Cuccagna, D. Pelinovsky, and V. Vougalter, ”Spectra of positive and negative energies in the linearized NLS problem,” Comm. Pure Appl. Math. 58(1), 1–29 (2005). · Zbl 1064.35181 · doi:10.1002/cpa.20050
[15] K. McLeod, ”Uniqueness of positive radial solutions of {\(\Delta\)}u + f(u) = 0 in \(\mathbb{R}\)n. II,” Trans. Amer. Math. Soc. 339(2), 495–505 (1993). · Zbl 0804.35034
[16] L. S. Pontryagin, ”Hermitian operators in spaces with indefinite metric,” Izv. Akad. Nauk SSSR Ser. Mat. 8(6), 243–280 (1944). · Zbl 0061.26004
[17] T. Y. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric (Nauka, Moscow, 1986) [in Russian].
[18] I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators in Hilbert Space (Nauka, Moscow, 1965) [in Russian].
[19] T. Ya. Azizov, A. Dijksma, and V. L. Khatskevich, ”On the defect of noncontractive operators in Krein spaces: a new formula and some applications,” in Contributions to Operator Theory in Spaces with an Indefinite Metric,Oper. Theory Adv. Appl. (Birkhauser, Basel, 1998), Vol. 106, pp. 91–112. · Zbl 0931.47027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.