×

Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms. (English) Zbl 1181.94045

Authors’ abstract: This paper provides new results on computing simultaneous sparse approximations of multichannel signals over redundant dictionaries using two greedy algorithms. The first one, \(p\)-thresholding, selects the \(S\) atoms that have the largest \(p\)-correlation while the second one, \(p\)-simultaneous matching pursuit (\(p\)-SOMP), is a generalisation of an algorithm studied by J. A. Tropp, A. C. Gilbert and M. J. Strauss [Signal Process. 86, No. 3, 572–588 (2006; Zbl 1163.94396)]. The paper first provides exact recovery conditions as well as worst case analyses of all algorithms. The results, expressed using the standard cumulative coherence, are very reminiscent of the single channel case and, in particular, impose stringent restrictions on the dictionary.
The authors unlock the situation by performing an \(average\) case analysis of both algorithms. First, they set up a general probabilistic signal model in which the coefficients of the atoms are drawn at random from the standard Gaussian distribution. Second, they show that under this model, and with mild conditions on the coherence, the probability that \(p\)-thresholding and \(p\)-SOMP fail to recover the correct components is overwhelmingly small and gets smaller as the number of channels increases.
Furthermore, the authors analyse the influence of selecting the set of correct atoms at random. They show that, if the dictionary satisfies a uniform uncertainty principle [E. Candes and T. Tao, IEEE Trans. Inf. Theory 52, No. 12, 5406–5425 (2006; doi:10.1109/TIT.2006.885507)], the probability that simultaneous OMP fails to recover any sufficiently sparse set of atoms gets increasingly smaller as the number of channels increases.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
41A28 Simultaneous approximation
41A46 Approximation by arbitrary nonlinear expressions; widths and entropy
60D05 Geometric probability and stochastic geometry

Citations:

Zbl 1163.94396

Software:

JPEG2000

References:

[1] Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. (to appear) · Zbl 1177.15015
[2] Baron, D., Duarte, M., Sarvotham, S., Wakin, M., Baraniuk, R.: An information-theoretic approach to distributed compressed sensing. In: Proc. 45rd Conference on Communication, Control, and Computing (2005)
[3] Baron, D., Wakin, M., Duarte, M., Sarvotham, S., Baraniuk, R.: Distributed compressed sensing. Preprint (2005)
[4] Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006) · Zbl 1098.94009 · doi:10.1002/cpa.20124
[5] Candes, E., Tao, T.: Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006) · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[6] Chen, J., Huo, X.: Sparse representations for multiple measurement vectors (MMV) in an over-complete dictionary. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP-2005) (2005)
[7] Chen, J., Huo, X.: Theoretical results on sparse representations of multiple measurement vectors. IEEE Trans. Signal Process. 54(12), 4634–4643 (2006) · Zbl 1375.94051 · doi:10.1109/TSP.2006.881263
[8] DeVore, R., Lorentz, G.: Constructive Approximation. Springer, Berlin (1993) · Zbl 0797.41016
[9] Donoho, D., Elad, M.: Maximal sparsity representation via l 1 minimization. Proc. Nat. Acad. Sci. 100(4), 369–388 (2003)
[10] Donoho, D., Elad, M., Temlyakov, V.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006) · Zbl 1288.94017 · doi:10.1109/TIT.2005.860430
[11] Donoho, D., Vetterli, M., DeVore, R.A., Daubechies, I.: Data compression and harmonic analysis. IEEE Trans. Inf. Theory 44, 391–432 (1998) · Zbl 1125.94311 · doi:10.1109/18.720544
[12] Gribonval, R., Nielsen, M.: Beyond sparsity: Recovering structured representations by l1 minimization and greedy algorithms. Publication interne 1684, IRISA, Rennes (2005) · Zbl 1128.41004
[13] Gribonval, R., Nielsen, M., Vandergheynst, P.: Towards an adaptive computational strategy for sparse signal approximation. Preprint of the Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA) (2006)
[14] Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Oxford University Press, London (2001) · Zbl 1015.60002
[15] Ledoux, M.: The Concentration of Measure Phenomenon. Am. Math. Soc., Providence (2001) · Zbl 0995.60002
[16] Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Isoperimetry and Processes. Springer, Berlin (1991) · Zbl 0748.60004
[17] Luo, Z., Gaspar, M., Liu, J., Swami, A.: Distributed signal processing in sensor networks. IEEE Signal Process. Mag. 23(4), 14–15 (2006)
[18] Rauhut, H.: Stability results for random sampling of sparse trigonometric polynomials. IEEE Trans. Inf. Theory (to appear) · Zbl 1247.94010
[19] Rauhut, H., Schnass, K., Vandergheynst, P.: Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 54(5), 2210–2219 (2008) · Zbl 1332.94022 · doi:10.1109/TIT.2008.920190
[20] Rudelson, M., Vershynin, R.: Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements. In: Proc. CISS 2006 (40th Annual Conference on Information Sciences and Systems) (2006) · Zbl 1114.60009
[21] Schnass, K., Vandergheynst, P.: Average Performance Analysis for Thresholding. IEEE Signal Process. Lett. 14(11), 828–831 (2007) · doi:10.1109/LSP.2007.903248
[22] Schnass, K., Vandergheynst, P.: Dictionary preconditioning for greedy algorithms. IEEE Trans. Signal Process. 56(5), 1994–2002 (2008) · Zbl 1390.94396 · doi:10.1109/TSP.2007.911494
[23] Taubman, D., Marcellin, W.: JPEG2000: Image Compression Fundamentals, Standards, and Practice. Springer, Berlin (2002)
[24] Tropp, J.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004) · Zbl 1288.94019 · doi:10.1109/TIT.2004.834793
[25] Tropp, J.: Topics in sparse approximation. Ph.D. Thesis, University of Texas at Austin (2004) · Zbl 1288.94019
[26] Tropp, J.: Just relax: Convex programming methods for subset selection and sparse approximation. IEEE Trans. Inf. Theory 51(3), 1030–1051 (2006) · Zbl 1288.94025 · doi:10.1109/TIT.2005.864420
[27] Tropp, J.: On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 25, 1–24 (2008) · Zbl 1143.15026 · doi:10.1016/j.acha.2007.09.001
[28] Tropp, J., Gilbert, A., Strauss, M.: Algorithms for simultaneous sparse approximations. Part I: Greedy pursuit. Signal Process. 86, 572–588 (2006). Special issue ”Sparse approximations in signal and image processing” · Zbl 1163.94396 · doi:10.1016/j.sigpro.2005.05.030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.