×

A numerical investigation of horizontal viscous gravity currents. (English) Zbl 1181.76054

Summary: We study numerically the viscous phase of horizontal gravity currents of immiscible fluids in the lock-exchange configuration. A numerical technique capable of dealing with stiff density gradients is used, allowing us to mimic high-Schmidt-number situations similar to those encountered in most laboratory experiments. Plane two-dimensional computations with no-slip boundary conditions are run so as to compare numerical predictions with the ‘short reservoir’ solution of H. E. Huppert [J. Fluid Mech. 121, 43–58 (1982)], which predicts the front position \(l_{f}\) to evolve as \(t^{1/5}\), and the ‘long reservoir’ solution of J. Gratton and F. Minotti [J. Fluid Mech. 210, 155–182 (1990; Zbl 0686.76024)] which predicts a diffusive evolution of the distance travelled by the front \(x_{f} \sim t^{1/2}\). In line with dimensional arguments, computations indicate that the self-similar power law governing the front position is selected by the flow Reynolds number and the initial volume of the released heavy fluid. We derive and validate a criterion predicting which type of viscous regime immediately succeeds the slumping phase. The computations also reveal that, under certain conditions, two different viscous regimes may appear successively during the life of a given current. Effects of sidewalls are examined through three-dimensional computations and are found to affect the transition time between the slumping phase and the viscous regime. In the various situations we consider, we make use of a force balance to estimate the transition time at which the viscous regime sets in and show that the corresponding prediction compares well with the computational results.

MSC:

76D50 Stratification effects in viscous fluids
76M12 Finite volume methods applied to problems in fluid mechanics
76-05 Experimental work for problems pertaining to fluid mechanics

Citations:

Zbl 0686.76024
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112005006932 · Zbl 1085.76559 · doi:10.1017/S0022112005006932
[2] DOI: 10.1017/S0022112083002979 · doi:10.1017/S0022112083002979
[3] DOI: 10.1017/S0022112005004933 · Zbl 1077.76020 · doi:10.1017/S0022112005004933
[4] DOI: 10.1146/annurev.fluid.31.1.201 · doi:10.1146/annurev.fluid.31.1.201
[5] DOI: 10.1017/S0022112080000894 · doi:10.1017/S0022112080000894
[6] DOI: 10.1063/1.2918379 · Zbl 1182.76304 · doi:10.1063/1.2918379
[7] Huppert, Perspectives in Fluid Dynamics pp 447– (2000)
[8] DOI: 10.1017/S0022112090001240 · Zbl 0686.76024 · doi:10.1017/S0022112090001240
[9] DOI: 10.1017/S0022112082001797 · doi:10.1017/S0022112082001797
[10] DOI: 10.1017/S0022112082001785 · doi:10.1017/S0022112082001785
[11] DOI: 10.1146/annurev.fl.04.010172.002013 · doi:10.1146/annurev.fl.04.010172.002013
[12] DOI: 10.1017/S0022112007005769 · Zbl 1178.76135 · doi:10.1017/S0022112007005769
[13] DOI: 10.1016/j.ijmultiphaseflow.2006.07.003 · doi:10.1016/j.ijmultiphaseflow.2006.07.003
[14] DOI: 10.1017/S0022112000001221 · Zbl 0985.76042 · doi:10.1017/S0022112000001221
[15] DOI: 10.1063/1.2196451 · doi:10.1063/1.2196451
[16] DOI: 10.1017/S002211200800414X · Zbl 1189.76160 · doi:10.1017/S002211200800414X
[17] DOI: 10.1007/s00162-008-0085-2 · Zbl 1178.76115 · doi:10.1007/s00162-008-0085-2
[18] DOI: 10.1017/S0022112068000133 · Zbl 0169.28503 · doi:10.1017/S0022112068000133
[19] DOI: 10.1016/0021-9991(79)90051-2 · Zbl 0416.76002 · doi:10.1016/0021-9991(79)90051-2
[20] DOI: 10.1017/S0022112007005174 · Zbl 1110.76015 · doi:10.1017/S0022112007005174
[21] Simpson, Gravity Currents (1997)
[22] DOI: 10.1146/annurev.fl.14.010182.001241 · doi:10.1146/annurev.fl.14.010182.001241
[23] DOI: 10.1063/1.2813581 · Zbl 1182.76681 · doi:10.1063/1.2813581
[24] DOI: 10.1016/S0301-9322(01)00065-9 · Zbl 1136.76590 · doi:10.1016/S0301-9322(01)00065-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.