×

Mechanics of extended continua: Modeling and simulation of elastic microstretch materials. (English) Zbl 1181.74006

The authors carefully re-derive Eringen’s equations for so-called microstretch materials, providing thus a natural setting for numerical modelling by means of the finite element method. An appropriate Helmholtz free energy is postulated, although no precise values of material coefficients are known. Numerical results are reported for simple two-dimensional test specimens subjected to plane strain and uniaxial tension. The models presented are compatible with the Cosserat continuum formulation (pure internal rotation) when stretch-related effects are discarded. This reduction lends itself to an interpretation of small stretching as a penalty in the formulation of the Cosserat case.

MSC:

74A60 Micromechanical theories
74S05 Finite element methods applied to problems in solid mechanics
74A35 Polar materials
Full Text: DOI

References:

[1] Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mat Tech 106:326–330 · doi:10.1115/1.3225725
[2] Allen SJ, DeSilva CN, Kline KA (1967) Theory of simple deformable directed fluids. Phys Fluids 10(12):2551–2555 · Zbl 0173.27702 · doi:10.1063/1.1762075
[3] Braess D (2001) Finite elements. theory, fast solvers and applications in solid mechanics. Cambridge University Press, London · Zbl 0976.65099
[4] Brenner SC, Scott LR (2002) The mathematical theory of finite element methods, 2nd edn. Springer, Berlin Heidelberg New York
[5] Ciarletta M (1999) On the bending of microstretch elastic plates. Int J Eng Sci 37(10):1309–1318 · Zbl 1210.74108 · doi:10.1016/S0020-7225(98)00123-2
[6] Cosserat E, Cosserat F (1909) Théorie des corps déformable. Hermann et Fils · JFM 40.0862.02
[7] Cowin SC (1974) The theory of polar fluids. Adv Appl Mech 14:279–347 · doi:10.1016/S0065-2156(08)70034-6
[8] deBorst R (1991) Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng Comput 8:317–332 · doi:10.1108/eb023842
[9] DeCicco S (2003) Stress concentration effects in microstretch elastic bodies. Int J Eng Sci 41(2):187–199 · Zbl 1211.74111 · doi:10.1016/S0020-7225(02)00154-4
[10] Diebels S (1999) A micropolar theory of porous media: constitutive modelling. Transport Porous Media 34:193–208 · doi:10.1023/A:1006517625933
[11] Dietsche A, Steinmann P, Willam K (1993) Micropolar elastoplasticity and its role in localization analysis. Int J Plast 9:813–831 · Zbl 0794.73004 · doi:10.1016/0749-6419(93)90053-S
[12] Eringen AC (1966) Mechanics of micromorphic materials. In: Görtler H, Sorger P (eds) Proceedings of 11th international congress of applied mechanics. Springer, Berlin Heidelberg New York, pp 131–138
[13] Eringen AC (1968) Theory of micropolar elasticity. In: Liebowitz H (eds) Fracture An advanced treatise, vol II. Academic, New York, pp 621–729 · Zbl 0266.73004
[14] Eringen AC (1970) Balance laws of micromorphic mechanics. Int J Eng Sci 8:819–828 · Zbl 0219.73108 · doi:10.1016/0020-7225(70)90084-4
[15] Eringen AC (1972) Theory of micromorphic materials with memory. Int J Eng Sci 10:623–641 · Zbl 0241.73116 · doi:10.1016/0020-7225(72)90089-4
[16] Eringen AC (1990) Theory of thermo-microstretch elastic solids. Int J Eng Sci 28(12):1291–1301 · Zbl 0718.73014 · doi:10.1016/0020-7225(90)90076-U
[17] Eringen AC (1992) Balance laws of micromorphic continua revisited. Int J Eng Sci 30(6):805–810 · Zbl 0754.73079 · doi:10.1016/0020-7225(92)90109-T
[18] Eringen AC (1999) Microcontinuum field theories. Springer, Berlin Heidelberg New York · Zbl 0953.74002
[19] Eringen AC, Kafadar CB (1976) Polar field theories. In: Continuum physics, vol 4. Eringen AC (eds) Academic, New York, pp 1–73
[20] Forest S, Sievert R (2003) Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech 160:71–111 · Zbl 1064.74009 · doi:10.1007/s00707-002-0975-0
[21] Günther W (1958) Zur Statik und Kinematik des Cosserat’schen Kontinuums. Abh. Braunschweigische Wiss. Gesell. 10:195–213 · Zbl 0102.17302
[22] Green AE, Rivlin RS (1964) Multipolar continuum mechanics. Arch Ration Mech Anal 17:113–147 · Zbl 0133.17604 · doi:10.1007/BF00253051
[23] Hill R (1998) The mathematical theory of plasticity. Clarendon, Oxford · Zbl 0923.73001
[24] Iesan D, Nappa L (2001) On the plane strain of microstretch elastic solids. Int J Eng Sci 39:1815–1835 · Zbl 1210.74019 · doi:10.1016/S0020-7225(01)00017-9
[25] Iesan D, Nappa L (2001) Extremum principles and existence results in micromorphic elasticity. Int J Eng Sci 39:2051–2070 · Zbl 1210.74022 · doi:10.1016/S0020-7225(01)00043-X
[26] Iesan D, Quintanilla R (1994) Existence and continuous dependence results in the theory of microstretch elastic bodies. Int J Eng Sci 32:991–1001 · Zbl 0924.73202 · doi:10.1016/0020-7225(94)90051-5
[27] Iesan D, Scalia A (2003) On complex potentials in the theory of microstretch elastic bodies. Int J Eng Sci 41(17):1989–2003 · Zbl 1211.74025 · doi:10.1016/S0020-7225(03)00112-5
[28] KirchnerN, Steinmann P (2005) A unifying treatise on variational principles for gradient and micro-morphic continua. Philosophical Magazine 85(33–35):3875–3895 · doi:10.1080/14786430500362421
[29] Kumar R, Deswal S (2002) Wave propagation through a cylindrical bore contained in a microstretch elastic medium. J Sound Vib 250(4):711–722 · doi:10.1006/jsvi.2001.3925
[30] Lax PD, Milgram AN (1954) Parabolic equations. Contributions to the theory of partial differential equations. Ann Math Stud 33:167–190 · Zbl 0058.08703
[31] Lee JD, Chen Y (2003) Constitutive relations of micromorphic thermoplasticity. Int J Eng Sci 41(17):387–399 · Zbl 1211.74037 · doi:10.1016/S0020-7225(02)00240-9
[32] Leslie FM (1968) Some constitutive equations for liquid crystals. Arch Ration Mech Anal 28:265–283 · Zbl 0159.57101 · doi:10.1007/BF00251810
[33] Marsden JE, Hughes JR, Hughes TJR (1983) Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs · Zbl 0545.73031
[34] Mindlin RD (1963) Microstructure in linear elasticity. Arch Ration Mech Anal 16:51–78
[35] Mühlhaus HB (1989) Application of Cosserat theory in numerical solutions of limit load problems. Ing Arch 59:124–137 · doi:10.1007/BF00538366
[36] Mühlhaus HB, Vardoulakis I (1987) The thickness of shear bands in granular materials. Géotechnique 37:271–283 · doi:10.1680/geot.1987.37.3.271
[37] Nappa L (2001) Variational principles in micromorphic elasticity. Mech Res Commun 28:405–412 · Zbl 1090.74563 · doi:10.1016/S0093-6413(01)00190-2
[38] Neff P (2006) Existence of minimizers for a finite-strain micromorphic elastic solid. Proc R Soc Edinburgh, A 136:997–1012 · Zbl 1106.74010 · doi:10.1017/S0308210500004844
[39] Oden JT, Reddy JN (1976) Variational methods in theoretical mechanics. Springer, Berlin Heidelberg New York
[40] Scalia A (2000) Extension, bending and torsion of anisotropic microstretch elastic cylinders. Math Mech Solids 5(1):31–40 · Zbl 1024.74008 · doi:10.1177/108128650000500103
[41] Schwab C (1998) p- and hp- finite element methods. Theory and applications in solid and fluid mechanics. Clarendon Press, Oxford · Zbl 0910.73003
[42] Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, Berlin Heidelberg New York · Zbl 0934.74003
[43] Singh B (2001) Reflection and refraction of plane waves at a liquid/thermo-microstretch elastic solid interface. Int J Eng Sci 39(5):583–598 · doi:10.1016/S0020-7225(00)00051-3
[44] Steeb H, Diebels S (2005) Continua with affine microstructure: theoretical aspects and applications. Proc Appl Math Mech 5:319–320 · Zbl 1391.74196 · doi:10.1002/pamm.200510136
[45] Steinmann P (1995) Theory and numerics of ductile micropolar elastoplastic damage. Int J Eng Sci 38:583–606 · Zbl 0861.73058
[46] Steinmann P (1999) Formulation and computation of geometrically nonlinear gradient damage. Int J Numer Methods Eng 46:757–779 · Zbl 0978.74006 · doi:10.1002/(SICI)1097-0207(19991020)46:5<757::AID-NME731>3.0.CO;2-N
[47] Toupin RA (1962) Elastic materials with couple stress. Arch Ration Mech Anal 11:385–413 · Zbl 0112.16805 · doi:10.1007/BF00253945
[48] Toupin RA (1964) Theory of elasticity with couple stresses. Arch Ration Mech Anal 17:85–112 · Zbl 0131.22001 · doi:10.1007/BF00253050
[49] Truesdell C, Noll W (1965) The non-linear field theories of mechanics. In: Flügge S (eds) Encyclopedia of Physics III/3. Springer, Berlin Heidelberg New York · Zbl 0779.73004
[50] Zienkiewicz OC, Taylor RL (1989,1991) The finite element method, 4th edn, vols 1 and 2. McGraw Hill, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.