×

Determinantal transition kernels for some interacting particles on the line. (English) Zbl 1181.60144

The authors consider four different non-interacting particle systems on the line. There are \(n\) particles, each of which attempts to move right in turn by a number of steps given by either a geometric or Bernoulli distribution; however, they are forbidden to pass, either by any particle trying to pass the particle to its right pushing that particle along with it, or by stopping at the position of that particle. The transition kernels for all four models are intertwined with a Karlin-McGregor-type kernel [S. Karlin and J. McGregor, Pac. J. Math.9, 1141–1164 (1959; Zbl 0092.34503)]; the kernels inherit the determinantal structure from the Karlin-McGregor formula, with a form similar to Schütz’s kernel for the totally asymmetric exclusion process [G. M. Schütz, J. Stat.Phys.88, No.1–2, 427–445 (1997; Zbl 0945.82508)]. The proofs involve using the Robinson-Schensted-Knuth correspondence to constuct a bijection between the motions of the particles and pairs of semistandard Young tableaux; the determinants arise from the formulas for the enumeration of tableaux.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J05 Discrete-time Markov processes on general state spaces
05E10 Combinatorial aspects of representation theory
05E05 Symmetric functions and generalizations
60B20 Random matrices (probabilistic aspects)

References:

[1] M. Alimohammadi, V. Karimipour and M. Khorrami. Exact solution of a one-parameter family of asymmetric exclusion processes. Phys. Rev. E 57 (1998) 6370-6376. · doi:10.1103/PhysRevE.57.6370
[2] Yu. Baryshnikov. GUEs and queues. Probab. Theory Related Fields 119 (2001) 256-274. · Zbl 0980.60042 · doi:10.1007/s004400000101
[3] A. Borodin and P. L. Ferrari. Large time asymptotics of growth models on space-like paths I: PushASEP. Available at arXiv.org/abs/0707. 2813, 2007. · Zbl 1187.82084
[4] A. Borodin, P. L. Ferrari, M. Prähofer and T. Sasamoto. Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007) 1055-1080. · Zbl 1136.82028 · doi:10.1007/s10955-007-9383-0
[5] A. B. Dieker and J. Warren. Transition probabilities for series Jackson networks. Preprint, 2007. · Zbl 1219.60076
[6] M. Draief, J. Mairesse and N. O’Connell. Queues, stores, and tableaux. J. Appl. Probab. 42 (2005) 1145-1167. · Zbl 1255.90040 · doi:10.1239/jap/1134587823
[7] W. Fulton. Young Tableaux. Cambridge University Press, 1997. · Zbl 0878.14034
[8] E. R. Gansner. Matrix correspondences of plane partitions. Pacific J. Math. 92 (1981) 295-315. · Zbl 0432.05010 · doi:10.2140/pjm.1981.92.295
[9] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437-476. · Zbl 0969.15008 · doi:10.1007/s002200050027
[10] K. Johansson. A multi-dimensional Markov chain and the Meixner ensemble. Available at arXiv.org/abs/0707.0098, 2007. · Zbl 1197.60072
[11] W. König. Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2 (2005) 385-447. · Zbl 1189.60024 · doi:10.1214/154957805100000177
[12] N. O’Connell. Conditioned random walks and the RSK correspondence. J. Phys. A 36 (2003) 3049-3066. · Zbl 1035.05097 · doi:10.1088/0305-4470/36/12/312
[13] N. O’Connell. A path-transformation for random walks and the Robinson-Schensted correspondence. Trans. Amer. Math. Soc. 355 (2003) 3669-3697. · Zbl 1031.05132 · doi:10.1090/S0002-9947-03-03226-4
[14] A. M. Povolotsky and V. B. Priezzhev. Determinant solution for the totally asymmetric exclusion process with parallel update. J. Stat. Mech. (2006) P07002. · Zbl 1274.82038
[15] A. Rákos and G. Schütz. Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process. J. Stat. Phys. 118 (2005) 511-530. · Zbl 1126.82330 · doi:10.1007/s10955-004-8819-z
[16] A. Rákos and G. Schütz. Bethe ansatz and current distribution for the TASEP with particle-dependent hopping rates. Markov Process. Related Fields 12 (2006) 323-334. · Zbl 1136.82350
[17] G. M. Schütz. Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88 (1997) 427-445. · Zbl 0945.82508 · doi:10.1007/BF02508478
[18] T. Seppäläinen. Exact limiting shape for a simplified model of first-passage percolation on the plane. Ann. Probab. 26 (1998) 1232-1250. · Zbl 0935.60093 · doi:10.1214/aop/1022855751
[19] R. P. Stanley. Enumerative Combinatorics , Vol. 1. Cambridge University Press, 1997. · Zbl 0889.05001
[20] R. P. Stanley. Enumerative Combinatorics , Vol. 2. Cambridge University Press, 1999. · Zbl 0928.05001
[21] C. A. Tracy and H. Widom. Integral formulas for the asymmetric simple exclusion process. Comm. Math. Phys. 279 (2008) 815-844. · Zbl 1148.60080 · doi:10.1007/s00220-008-0443-3
[22] J. Warren. Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab. 12 (2007) 573-590. · Zbl 1127.60078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.