×

Quantum dialogue by using the two-qutrit entangled states. (English) Zbl 1180.81033

Summary: A protocol for quantum dialogue is proposed to exchange directly the communicators’ secret messages by using the two-qutrit entangled state. In this protocol, the security of communication is ensured by the secret transmitting order of qutrits. It is shown that two legitimate users can directly transmit the secret messages by generalized Bell-basis measurement and classical communication.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P94 Quantum cryptography (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.67.661 · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[2] DOI: 10.1103/PhysRevLett.68.557 · Zbl 0969.94500 · doi:10.1103/PhysRevLett.68.557
[3] Bennett C. H., Phys. Rev. Lett. 69 pp 3121–
[4] DOI: 10.1103/PhysRevLett.69.2881 · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[5] DOI: 10.1103/RevModPhys.74.145 · Zbl 1371.81006 · doi:10.1103/RevModPhys.74.145
[6] DOI: 10.12693/APhysPolA.101.357 · doi:10.12693/APhysPolA.101.357
[7] DOI: 10.1103/PhysRevLett.89.187902 · doi:10.1103/PhysRevLett.89.187902
[8] DOI: 10.1103/PhysRevA.68.042317 · doi:10.1103/PhysRevA.68.042317
[9] Xia Y., J. Korean Phys. Soc. 47 pp 753–
[10] Wang G. Y., Chin. Phys. Lett. 23 pp 2658–
[11] DOI: 10.1016/j.optcom.2006.05.035 · doi:10.1016/j.optcom.2006.05.035
[12] DOI: 10.1016/j.physleta.2004.06.009 · Zbl 1134.81338 · doi:10.1016/j.physleta.2004.06.009
[13] Man Z. X., Chin. Phys. Lett. 22 pp 22–
[14] DOI: 10.1103/PhysRevLett.90.157901 · doi:10.1103/PhysRevLett.90.157901
[15] DOI: 10.1016/j.physleta.2004.10.025 · Zbl 1123.94371 · doi:10.1016/j.physleta.2004.10.025
[16] Ji X., China Phys. 15 pp 1418–
[17] Xia Y., J. Korean Phys. Soc. 48 pp 24–
[18] DOI: 10.1103/PhysRevA.73.022338 · doi:10.1103/PhysRevA.73.022338
[19] DOI: 10.1103/PhysRevA.58.3484 · doi:10.1103/PhysRevA.58.3484
[20] DOI: 10.1103/PhysRevA.58.4368 · doi:10.1103/PhysRevA.58.4368
[21] DOI: 10.1103/PhysRevA.58.4373 · doi:10.1103/PhysRevA.58.4373
[22] DOI: 10.1103/PhysRevA.65.052331 · doi:10.1103/PhysRevA.65.052331
[23] DOI: 10.1103/PhysRevA.65.022304 · doi:10.1103/PhysRevA.65.022304
[24] DOI: 10.1103/PhysRevLett.85.3313 · Zbl 1369.81026 · doi:10.1103/PhysRevLett.85.3313
[25] DOI: 10.1103/PhysRevLett.88.127901 · doi:10.1103/PhysRevLett.88.127901
[26] DOI: 10.1103/PhysRevA.67.012310 · doi:10.1103/PhysRevA.67.012310
[27] DOI: 10.1103/PhysRevA.67.012311 · doi:10.1103/PhysRevA.67.012311
[28] Zang B., Commun. Theor. Phys. 38 pp 537–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.